| 注册
首页|期刊导航|农业机械学报|基于高光谱红边偏度、峰度和机器学习的植被叶绿素含量估算模型研究

基于高光谱红边偏度、峰度和机器学习的植被叶绿素含量估算模型研究

姚付启 曾凡超 孙金伟 饶志龙 王子涵

农业机械学报2025,Vol.56Issue(9):566-575,595,11.
农业机械学报2025,Vol.56Issue(9):566-575,595,11.DOI:10.6041/j.issn.1000-1298.2025.09.047

基于高光谱红边偏度、峰度和机器学习的植被叶绿素含量估算模型研究

Estimating Vegetation Chlorophyll Content Based on Hyperspectral Red Edge Skewness,Kurtosis,and Machine Learning

姚付启 1曾凡超 2孙金伟 3饶志龙 1王子涵1

作者信息

  • 1. 鲁东大学水利土木学院,烟台 264025
  • 2. 鲁东大学水利土木学院,烟台 264025||中国科学院东北地理与农业生态研究所,长春 130102
  • 3. 鲁东大学资源与环境工程学院,烟台 264025
  • 折叠

摘要

Abstract

Chlorophyll is a key component in plant photosynthesis and an important indicator of physiological status and plant health.Accurate estimation of chlorophyll content is essential for monitoring plant growth conditions.Although traditional rededge parameters were widely used in chlorophyll estimation,they presented certain limitations.To address these shortcomings,rededge skewness(SRE)and rededge kurtosis(KRE)were introduced as novel rededge parameters to explore their relationship with chlorophyll content.Taking winter wheat and summer maize as study subjects,three modeling approaches-multiple linear regression(MLR),extreme gradient boosting(XGBoost),and backpropagation neural network(BPNN)—were employed to compare the performance of chlorophyll estimation models by using the proposed parameters versus traditional rededge parameters.The results demonstrated that SRE and KRE were significantly negatively correlated with chlorophyll content,showing a decreasing trend as chlorophyll levels were increased.Across all three modeling methods and crop types,models incorporating SRE and KRE achieved higher prediction accuracy than those based on traditional rededge parameters,characterized by higher R2,lower RMSE,and more concentrated residual distributions,indicating enhanced model stability and precision.Among the three modeling approaches,the BPNN model consistently exhibited the best performance,with significantly higher R2 values compared with that of MLR and XGBoost.The research result confirmed that SRE and KRE provided a more comprehensive representation of chlorophyll variation than traditional rededge parameters.When combined with BPNN modeling,they can substantially improve the accuracy of chlorophyll content estimation.These findings can offer a novel technical pathway for high-precision chlorophyll monitoring and had practical implications for crop condition assessment and precision agriculture.

关键词

叶绿素含量/估算模型/红边偏度/红边峰度/机器学习

Key words

chlorophyll content/estimation model/red edge skewness/red edge kurtosis/machine learning

分类

农业科技

引用本文复制引用

姚付启,曾凡超,孙金伟,饶志龙,王子涵..基于高光谱红边偏度、峰度和机器学习的植被叶绿素含量估算模型研究[J].农业机械学报,2025,56(9):566-575,595,11.

基金项目

国家自然科学基金项目(51809284、51309016)和山东省自然科学基金项目(ZR2020ME254、ZR2020QD061) (51809284、51309016)

农业机械学报

OA北大核心

1000-1298

访问量0
|
下载量0
段落导航相关论文