基于随机森林模型的长沙市O3浓度逐小时预测OA
Based on Random Forest Hourly Prediction of Ozone Concentration Model in Changsha City
利用长沙市10 个国控城市环境空气质量监测点位的近地面逐小时平均O3质量浓度数据和气象数据构建了臭氧污染严重季(春季、夏季和秋季)的随机森林机器学习模型,并对逐小时O3 质量浓度进行预测和分析.结果表明:1)2020-2023 年间O3 月均质量浓度呈"M"型分布和"春夏秋高冬低"的特点,高值区间主要分布在4-10 月,5 月和9 月出现峰值;O3 小时质量浓度变化呈单峰型分布,日内峰值出现在15 时至 16 时.2)春、夏、秋季的重要性排序前五的是hour>RH>PM2.5>T>NO2,hour因子对O3 的影响程度最大,RH、PM2.5、T、NO2 变量排位靠后,影响次之;在相关性分析中,O3 与气温的正相关性以及与相对湿度的负相关性最为突出,夏季O3 与PM2.5、PM10 之间表现出较强的正相关性.3)基于随机森林构建的O3 预测模型的拟合优度分析结果中,拟合度R2 较高,表现出优秀的预测性能,能够较好地捕捉到O3质量浓度的逐小时变化规律.4)通过对 2024 年长沙市春季、夏季与秋季的逐小时O3 质量浓度进行预测,结果表明随机森林模型具有很好的泛化能力,说明随机森林模型能够较准确地预测逐小时O3 质量浓度的变化趋势.
The average O3 mass concentration data and meteorological data of 10 state-con-trolled urban ambient air quality monitoring sites in Changsha City can build a random for-est machine learning model of ozone pollution(spring,summer and autumn),and predict the hourly O3 mass concentration.The results show that:1)The monthly average mass concentration of O3 between 2020 and 2023 is characterized by"M"type distribution with"spring,summer and autumn high and winter low".The high value is mainly concentrated in April to October,and the peak value appears in May and September.Hourly mass con-centration changes of O3 present a single peak distribution,and the daily peak value ap-pears at 15-16.2)For the importance of spring,summer and autumn,the top five are hour>RH>PM2.5>T>NO2,hour factor has the greatest impact on O3,RH,PM2.5,T and NO2 variables are ranked lower with secondary influence.In the analysis of correlation,the positive correlation between O3 and temperature and the negative correlation with rela-tive humidity are the strongest.The positive correlation between O3 and PM2.5 and PM10 in summer is also strong.3)The results of goodness-of-fit analysis of the O3 prediction model based on random forest show that the goodness-of-fit R2 is high,and shows excellent pre-diction performance and can better capture the hourly variation of the O3 concentration.4)By predicting the hourly O3 mass concentration of the spring,summer and autumn in Changsha City in 2024,the results show that the random forest model has a good generali-zation ability.Indicating that the random forest model can more accurately predict the trend of the hourly O3 mass concentration.
耿星莉;刘迎云
南华大学 资源环境与安全工程学院,湖南 衡阳 421001南华大学 资源环境与安全工程学院,湖南 衡阳 421001
资源环境
随机森林近地面臭氧长沙市预测
random forestsnear-surface ozoneChangsha cityprediction
《南华大学学报(自然科学版)》 2025 (3)
16-24,9
湖南省教育厅科学研究重点项目(17A180)
评论