| 注册
首页|期刊导航|交通信息与安全|基于Transformer-TCN-GRU的场面滑行轨迹预测模型

基于Transformer-TCN-GRU的场面滑行轨迹预测模型

王兴隆 李国祥 张钊 叶可 苏婷 葛京

交通信息与安全2025,Vol.43Issue(2):44-53,64,11.
交通信息与安全2025,Vol.43Issue(2):44-53,64,11.DOI:10.3963/j.jssn.1674-4861.2025.02.006

基于Transformer-TCN-GRU的场面滑行轨迹预测模型

A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU

王兴隆 1李国祥 2张钊 2叶可 3苏婷 3葛京4

作者信息

  • 1. 中国民航大学民航飞联网重点实验室 天津 300300
  • 2. 中国民航大学计算机科学与技术学院 天津 300300
  • 3. 中国民航信息网络股份有限公司信息服务部 北京 100011
  • 4. 中国民航信息网络股份有限公司安全生产与质量管理部 北京 100011
  • 折叠

摘要

Abstract

For aircraft taxiing trajectory prediction,existing methods exhibit low accuracy in real-time estimation of future positions over medium-term time horizons.To enhance prediction precision within this temporal scope while maintaining computational efficiency,this study proposes a taxiing trajectory prediction model integrating trans-former networks,cross-attention mechanisms,temporal convolutional networks(TCN),and gated recurrent units(GRU)to generate multiple candidate trajectories.The Transformer encoder captures temporal dependencies and motion patterns from historical trajectory data to derive global feature representations.Airport vector maps and taxi-ing route instructions from air traffic control systems are utilized to compute planned future taxiing path coordi-nates.A cross-attention mechanism then aligns the global trajectory features(as Query)with critical positions in the planned path sequence,mapping the fused path-enhanced features into multimodal representations corresponding to candidate trajectories.The TCN-GRU decoder processes each modality to capture long-term temporal dependencies and outputs multiple predicted trajectories with associated probabilities.Validation on real taxiing trajectories from a major Chinese airport demonstrates minimum average displacement error(minADE)of 1.932 m and minimum fi-nal displacement error(minFDE)of 1.811 m for 8-second predictions.Compared to individual GRU and TCN mod-els,the proposed approach reduces minADE/minFDE by 14.10%/30.88%and 16.62%/34.72%respectively,while maintain an average runtime of 17.70 milliseconds per sample.The proposed method achieves accurate and efficient trajectory prediction,supporting enhanced safety management in airport maneuvering areas.

关键词

滑行轨迹/轨迹预测/Transformer模型/时间卷积网络/门控循环单元

Key words

taxiing trajectory/trajectory prediction/transformer/temporal convolutional network/gated recurrent unit

分类

航空航天

引用本文复制引用

王兴隆,李国祥,张钊,叶可,苏婷,葛京..基于Transformer-TCN-GRU的场面滑行轨迹预测模型[J].交通信息与安全,2025,43(2):44-53,64,11.

基金项目

天津市教育委员会自然科学重点项目(2020ZD01)资助 (2020ZD01)

交通信息与安全

OA北大核心

1674-4861

访问量0
|
下载量0
段落导航相关论文