| 注册
首页|期刊导航|兰州大学学报(医学版)|基于机器学习的男性膀胱出口梗阻诊断模型

基于机器学习的男性膀胱出口梗阻诊断模型

杨正龙 胡友民 陈忠 周全

兰州大学学报(医学版)2025,Vol.51Issue(7):9-14,6.
兰州大学学报(医学版)2025,Vol.51Issue(7):9-14,6.DOI:10.13885/j.issn.2097-681X.2025.07.002

基于机器学习的男性膀胱出口梗阻诊断模型

A diagnostic model for male bladder outlet obstruction based on machine learning

杨正龙 1胡友民 1陈忠 2周全1

作者信息

  • 1. 华中科技大学机械科学与工程学院,湖北 武汉 430000
  • 2. 华中科技大学同济医学院,湖北 武汉 430000
  • 折叠

摘要

Abstract

Objective To develop a machine learning diagnostic model for male bladder outlet obstruction.Methods Retrospective urodynamic studydata from 580 male patients(290 obstructive cases and 290 non-obstructive cases)at Tongji Hospital Affiliated To Tongji Medical College HUST(2019-2024)were collected using stratified sampling.Fifteen characteristic parameters were extracted to establish the dataset.Models with different feature combinations were constructed,trained and validated.Performance was evaluated using precision,recall,F1-score,accuracy and specificity.Results The model achieved optimal performance(area under the curve:0.95±0.02)with 11 selected features via five-fold cross-validation,significantly outper-forming traditional methods(Linearized Passive Urethral Resistance Relation and bladder outlet obstruction index).Conclusion The backpropagation neural network-based machine learning model demonstrates strong diagnostic performance for male bladder outlet obstruction.

关键词

膀胱出口梗阻/尿动力学/机器学习/反向传播神经网络/特征提取/诊断模型

Key words

bladder outlet obstruction/urodynamics/machine learning/backpropagation neural network/fea-ture extraction/diagnostic algorithm

分类

医药卫生

引用本文复制引用

杨正龙,胡友民,陈忠,周全..基于机器学习的男性膀胱出口梗阻诊断模型[J].兰州大学学报(医学版),2025,51(7):9-14,6.

基金项目

湖北省自然科学联合基金项目(2023AFD072) (2023AFD072)

华中科技大学创新与转化孵化项目(2022ZHFY11) (2022ZHFY11)

兰州大学学报(医学版)

2097-681X

访问量0
|
下载量0
段落导航相关论文