| 注册
首页|期刊导航|水力发电学报|数字孪生水利监测感知网多参数时序预测模型

数字孪生水利监测感知网多参数时序预测模型

王超 张耀飞 张社荣 王枭华

水力发电学报2025,Vol.44Issue(9):73-88,16.
水力发电学报2025,Vol.44Issue(9):73-88,16.DOI:10.11660/slfdxb.20250907

数字孪生水利监测感知网多参数时序预测模型

Multi-parameter time series prediction model for digital twin water conservancy monitoring sensor networks

王超 1张耀飞 1张社荣 1王枭华1

作者信息

  • 1. 天津大学 水利工程智能建设与运维全国重点实验室,天津 300072||天津大学 建筑工程学院,天津 300072
  • 折叠

摘要

Abstract

For digital twin hydraulic monitoring perception networks,traditional single-point time series prediction models fail to capture spatial relationships among the devices,and cause missing correlation features;Uncertainty issues arising from strong subjectivity in model structure and parameter design.To address these issues,this paper presents a multi-parameter time series prediction model for monitoring perception networks based on the Bayesian optimization and Hyperband(BOHB),self-learning graph structures,and Bidirectional Long Short-Term Memory(BiLSTM)networks.First,a self-learning graph structure is generated to extract spatial features of the perception network using graph neural networks.Then,the bidirectional Long Short-Term Memory networks are used to extract temporal features,and the BOHB method is used to optimize hyperparameters and improve prediction accuracy.Finally,the model is applied to proactive predictions of future states of the monitoring perception network.We have verified that our new model has achieved optimization rates higher more than 4.35%,33.14%,20.47%,9.09%and 15.03%in R2,RMSE,MAE,MAPE and RMSRE respectively,enjoys higher accuracy and stronger generalization ability compared with a variety of previous prediction models,and has significant performance advantages.

关键词

数字孪生水利/监测感知网/自学习动态图结构/图神经网络/双向长短期记忆网络/贝叶斯优化

Key words

digital twin water conservancy/monitoring network/self-learning dynamic graph structure/graph neural network/bidirectional long short-term memory network/Bayesian optimization

分类

建筑与水利

引用本文复制引用

王超,张耀飞,张社荣,王枭华..数字孪生水利监测感知网多参数时序预测模型[J].水力发电学报,2025,44(9):73-88,16.

基金项目

天津市青年科技人才项目(QN20230203) (QN20230203)

天津市科技计划项目(24YDTPJC00070) (24YDTPJC00070)

天津大学自主创新基金(2023XJD-0065) (2023XJD-0065)

水力发电学报

OA北大核心

1003-1243

访问量0
|
下载量0
段落导航相关论文