| 注册
首页|期刊导航|森林工程|基于机器学习的森林碳储量时空分布模拟

基于机器学习的森林碳储量时空分布模拟

崔立东 贺丹 刘玉龙 丛喜东 刘丹

森林工程2025,Vol.41Issue(5):904-911,8.
森林工程2025,Vol.41Issue(5):904-911,8.DOI:10.7525/j.issn.1006-8023.2025.05.004

基于机器学习的森林碳储量时空分布模拟

Spatiotemporal Simulation of Forest Carbon Storage Based on Machine Learning

崔立东 1贺丹 2刘玉龙 3丛喜东 3刘丹4

作者信息

  • 1. 黑龙江省木材科学研究所,哈尔滨 150081
  • 2. 哈尔滨远东理工学院,哈尔滨 150025
  • 3. 黑龙江省生态研究所,哈尔滨 150081
  • 4. 黑龙江省气象科学研究所,哈尔滨 150030
  • 折叠

摘要

Abstract

Forest carbon storage is a critical component of global carbon cycle research and plays a significant role in ad-dressing climate change.This study focused on the northern slope of the Zhangguangcai Mountains in Heilongjiang Prov-ince.By combining ground observation data with Landsat TM(thematic mapper)/OLI(operational land imager)data,multiple machine learning models were applied,along with the bootstrap aggregating ensemble learning algorithm,to simulate forest carbon storage.The results showed that from 1990 to 2022,the forest carbon storage in the study area ex-hibited a significant increasing trend,with an annual average carbon storage of(80.77±0.27)Mg C/hm2.The spatial distribution demonstrated notable heterogeneity,with high carbon storage areas concentrated in flat and semi-mountain-ous regions.Additionally,the mean growing-season temperature was found to have a highly significant positive correla-tion with forest carbon storage(P<0.01),indicating that temperature was the primary climatic factor influencing carbon storage changes.This study provides a novel approach for forest carbon storage accurate simulation carbon sink manage-ment.

关键词

遥感/深度学习/Bagging集成学习/气候因子

Key words

Remote sensing/deep learning/Bagging ensemble learning/climatic factors

分类

农业科技

引用本文复制引用

崔立东,贺丹,刘玉龙,丛喜东,刘丹..基于机器学习的森林碳储量时空分布模拟[J].森林工程,2025,41(5):904-911,8.

基金项目

黑龙江省自然科学基金联合引导项目(LH2024C114). (LH2024C114)

森林工程

OA北大核心

1006-8023

访问量0
|
下载量0
段落导航相关论文