| 注册
首页|期刊导航|数字图书馆论坛|基于ChatGPT的高校突发事件网络舆情情感分析研究

基于ChatGPT的高校突发事件网络舆情情感分析研究

江长斌 陈子涵 黄英辉 王丹丹 何珂

数字图书馆论坛2025,Vol.21Issue(6):53-62,10.
数字图书馆论坛2025,Vol.21Issue(6):53-62,10.DOI:10.3772/j.issn.1673-2286.2025.06.006

基于ChatGPT的高校突发事件网络舆情情感分析研究

Sentiment Analysis of Network Public Opinion in University Emergencies Based on ChatGPT

江长斌 1陈子涵 1黄英辉 1王丹丹 2何珂1

作者信息

  • 1. 武汉理工大学管理学院,武汉 430070
  • 2. 香港浸会大学传理学院,香港 999077
  • 折叠

摘要

Abstract

Exploring the application of Generative Artificial Intelligence(GAI)in the management of public opinion emergencies in higher education institutions aims to advance innovation in network public opinion management technologies for universities while providing new perspectives for the application of GAI in social governance.This study integrates prompt engineering and context learning to construct a sentiment analysis framework based on GAI,with ChatGPT as the core model.Taking the case of a female doctoral student at a university in Beijing reporting sexual harassment by her supervisor in real name as the research subject,we collect data from the Weibo platform using web crawlers and divide the evolution stages of public opinion based on information lifecycle theory.By employing a few-shot learning strategy,10 high-quality annotated examples are selected to guide the ChatGPT model in sentiment classification,and multi-stage negative sentiment keywords are extracted to reveal evolutionary patterns.We find that the public opinion evolution of this incident exhibits a four-stage pattern:skepticism,anger,reflection,and rationality,with the proportion of negative sentiment rising from 48.3%in the latency phase to a peak of 58.5%during the outbreak phase,followed by a gradual decline to 40.4%in the regression phase,illustrating a rise-then-fall evolutionary trajectory.The findings demonstrate that ChatGPT outperforms traditional baseline methods such as TF-IDF-SVM and CNN-BiLSTM-Attention in sentiment analysis.Specifically,the ChatGPT-based sentiment analysis model achieves overall accuracy improvements of 5.87%and 1.56%,respectively,over traditional models,while exhibiting superior performance in negative sentiment classification within complex contexts involving metaphor and irony.

关键词

生成式人工智能/ChatGPT/上下文学习/提示工程/高校突发事件/网络舆情/情感演化

Key words

Generative Artificial Intelligence/ChatGPT/Context Learning/Prompt Engineering/University Emergency/Network Public Opinion/Emotional Evolution

分类

社会科学

引用本文复制引用

江长斌,陈子涵,黄英辉,王丹丹,何珂..基于ChatGPT的高校突发事件网络舆情情感分析研究[J].数字图书馆论坛,2025,21(6):53-62,10.

基金项目

本研究得到国家社会科学基金项目"大数据视域下'隐性'政治舆情演化规律及治理路径研究"(编号:19BSH013)资助. (编号:19BSH013)

数字图书馆论坛

1673-2286

访问量0
|
下载量0
段落导航相关论文