| 注册
首页|期刊导航|通信与信息技术|基于改进YOLOv5s-TB算法针对水泥路面病害检测研究

基于改进YOLOv5s-TB算法针对水泥路面病害检测研究

朱莉 姚庆宇

通信与信息技术Issue(5):30-34,5.
通信与信息技术Issue(5):30-34,5.

基于改进YOLOv5s-TB算法针对水泥路面病害检测研究

Research on the detection of cement pavement diseases based on the improved YOLOv5s-TB algorithm

朱莉 1姚庆宇1

作者信息

  • 1. 东北林业大学计算机与控制工程学院,哈尔滨 150000
  • 折叠

摘要

Abstract

Aiming at the problem of low efficiency of traditional methods and insufficient detection accuracy of existing models in road disaster detection,a self attention mechanism based road disaster detection algorithm YOLOv5S-TB is adopted based on machine vi-sion and deep learning methods.Combining the advantages of Transformer structure,such as reducing the number of computational pa-rameters and strong ability to understand local information,into Backbone network;Replace the original FPN+PANet structure with a BIFPN structure that enhances small object detection performance and improves detection accuracy.The results showed that the detec-tion accuracy of YOLOv5S-TB algorithm on the dataset was improved by 2.8%compared to traditional YOLOv5s,and the mAP value was increased by 0.6%,effectively improving the problems of insufficient accuracy and instability in road disaster detection.

关键词

YOLOv5/Transformer/BIFPN/自注意力机制/深度学习

Key words

YOLOv5/Transformer/BIFPN/Self attention mechanism/Deep learning

分类

信息技术与安全科学

引用本文复制引用

朱莉,姚庆宇..基于改进YOLOv5s-TB算法针对水泥路面病害检测研究[J].通信与信息技术,2025,(5):30-34,5.

通信与信息技术

1672-0164

访问量0
|
下载量0
段落导航相关论文