| 注册
首页|期刊导航|苏州科技大学学报(自然科学版)|基于CNN-LSTM-Attention的空调负荷预测

基于CNN-LSTM-Attention的空调负荷预测

范见雪 陈鑫

苏州科技大学学报(自然科学版)2025,Vol.42Issue(3):70-77,8.
苏州科技大学学报(自然科学版)2025,Vol.42Issue(3):70-77,8.DOI:10.12084/j.issn.2096-3289.2025.03.009

基于CNN-LSTM-Attention的空调负荷预测

Air conditioning load forecasting based on CNN-LSTM-Attention

范见雪 1陈鑫1

作者信息

  • 1. 苏州科技大学电子与信息工程学院,江苏苏州 215009
  • 折叠

摘要

Abstract

To achieve the dual-carbon goals and reduce carbon emissions,air conditioning load forecasting has become a critical task for optimizing energy management and conserving energy.Single neural network models often struggle with the complexity of processing high-dimensional time series data.This paper proposes an inte-grated model based on Convolutional Neural Networks(CNN),Long Short-Term Memory networks(LSTM),and an attention mechanism.The model first employs CNN to extract key features from the time series,reducing data noise and redundancy.Subsequently,LSTM is utilized to capture the temporal dependencies within the load data,and an attention mechanism is introduced to enhance the model's focus on critical time steps,thereby improving prediction accuracy.Comparative experiments with traditional algorithms,such as BP and LSTM neural networks,demonstrate the effectiveness of the proposed CNN-LSTM-Attention model in air conditioning load forecasting.The results show that the model outperforms other network models in prediction accuracy,providing precise load forecasting support for energy conservation and emission reduction.

关键词

空调负荷预测/CNN网络/LSTM网络/注意力机制

Key words

air conditioning load forecasting/CNN network/LSTM network/attention mechanism

分类

通用工业技术

引用本文复制引用

范见雪,陈鑫..基于CNN-LSTM-Attention的空调负荷预测[J].苏州科技大学学报(自然科学版),2025,42(3):70-77,8.

基金项目

国家自然科学基金青年项目(62203317) (62203317)

江苏省自然科学基金青年项目(BK20210862) (BK20210862)

江苏省高等学校自然科学研究面上项目(21KJD120001) (21KJD120001)

苏州科技大学学报(自然科学版)

2096-3289

访问量0
|
下载量0
段落导航相关论文