| 注册
首页|期刊导航|苏州科技大学学报(自然科学版)|基于改进CS与大数据优化聚类的高校学生行为识别分析

基于改进CS与大数据优化聚类的高校学生行为识别分析

刘光宗 赵晓峰 张珍 刘桐瑞

苏州科技大学学报(自然科学版)2025,Vol.42Issue(3):78-84,7.
苏州科技大学学报(自然科学版)2025,Vol.42Issue(3):78-84,7.DOI:10.12084/j.issn.2096-3289.2025.03.010

基于改进CS与大数据优化聚类的高校学生行为识别分析

Behavior recognition and analysis of college students based on improved CS and big data optimization clustering

刘光宗 1赵晓峰 1张珍 1刘桐瑞1

作者信息

  • 1. 安徽财经大学图书与信息中心,安徽 蚌埠 233000
  • 折叠

摘要

Abstract

The application of big data in the field of education is becoming more and more extensive.At present,there are still some problems in the data processing effect and model generalization ability of student behavior recognition and analysis model.In view of this,this paper proposes an analysis model of college students' behav-ior recognition based on improved cuckoo search algorithm and fuzzy C-means clustering.The experimental re-sults show that the average F1 fraction of the proposed model is 0.982 6,and the average geometric mean is 0.902 3,which is superior to other models.Secondly,the AUC value of the model reaches up to 0.952.In terms of clus-tering effect,the sum of squares of clustering error of the model is the lowest 146,and the distribution of contour coefficients is concentrated between 0.8~0.9,and the scatter distribution is the most concentrated.In addition,in the analysis of students' social relations with different feature dimensions,the F1 value,recall rate and accuracy rate all exceed 0.90,showing good generalization ability and practicability.The research provides more accurate data support and decision-making basis for higher education management and student development assessment,and promotes the in-depth application of big data technology in the field of education.

关键词

大数据/学生行为识别分析/布谷鸟搜索算法/高校教育/模糊C均值聚类

Key words

big data/student behavior recognition and analysis/Cuckoo search algorithm/higher education/fuzzy C-means clustering

分类

信息技术与安全科学

引用本文复制引用

刘光宗,赵晓峰,张珍,刘桐瑞..基于改进CS与大数据优化聚类的高校学生行为识别分析[J].苏州科技大学学报(自然科学版),2025,42(3):78-84,7.

基金项目

国家社会科学基金项目(16BTQ085) (16BTQ085)

中国高校产学研创新基金课题(2022MU055) (2022MU055)

苏州科技大学学报(自然科学版)

2096-3289

访问量1
|
下载量0
段落导航相关论文