| 注册
首页|期刊导航|计算机技术与发展|基于孪生网络和度量学习的牛脸检测与识别模型

基于孪生网络和度量学习的牛脸检测与识别模型

刘晋维 李富忠 陈新文 郑文新 郭雷风

计算机技术与发展2025,Vol.35Issue(9):175-181,7.
计算机技术与发展2025,Vol.35Issue(9):175-181,7.DOI:10.20165/j.cnki.ISSN1673-629X.2025.0111

基于孪生网络和度量学习的牛脸检测与识别模型

Research on Cattle Face Detection and Recognition Model Based on Siamese Network and Metric Learning

刘晋维 1李富忠 2陈新文 3郑文新 3郭雷风4

作者信息

  • 1. 山西农业大学软件学院,山西晋中 030801||中国农业科学院农业信息研究所,北京 100081
  • 2. 山西农业大学软件学院,山西晋中 030801
  • 3. 新疆畜牧科学院畜牧业质量标准研究所,新疆乌鲁木齐 830011
  • 4. 中国农业科学院农业信息研究所,北京 100081||新疆智慧养殖重点实验室,新疆乌鲁木齐 830011
  • 折叠

摘要

Abstract

With the continuous development of the global livestock industry,the demand for accurate and reliable cattle monitoring is increasing day by day.Traditional marking methods such as ear tags and Radio Frequency Identification are widely used,but they have drawbacks such as being prone to loss and having high maintenance costs.Moreover,they are not conducive to animal welfare.As a bio-metric recognition technology,cattle face recognition can overcome these limitations,thereby reducing potential harm to cattle.However,traditional cattle face recognition methods are often limited by recognition accuracy and environmental adaptability.In order to solve the above problems,we design a cattle face detection and recognition model named CowSiamese based on the Siamese network and metric learning.This model first utilizes an improved YOLOv8s to detect the position of cattle faces before conducting feature metric learning for individual cattle identification.Firstly,an improved EfficientNet-based Siamese network structure is proposed,incorporating a 3D multi-scale attention mechanism.Secondly,to further improve feature differentiation,an improvement on the Arcface loss function is made,introducing a new metric learning loss function called Tri-Arcface that more effectively optimizes the geometric distribution of the feature space.Experimental results show that the proposed model achieves recognition accuracy,recall rate,and F1 score of 99.4%,98.6%,and 99.5%,respectively.Compared with existing technologies,there is a significant improvement in recognition accuracy.

关键词

牛脸识别/孪生网络/牛脸检测/度量学习/改进EfficientNet/Tri-Arcface

Key words

cattle face recognition/siamese network/cattle face detection/metric learning/improved EfficientNet/Tri-Arcfaceh

分类

信息技术与安全科学

引用本文复制引用

刘晋维,李富忠,陈新文,郑文新,郭雷风..基于孪生网络和度量学习的牛脸检测与识别模型[J].计算机技术与发展,2025,35(9):175-181,7.

基金项目

石家庄市农业科技项目(24011) (24011)

新疆重点研发专项(2023B02013) (2023B02013)

河北省重点研发专项(22326609D) (22326609D)

中国农业科学院科技创新工程(CAAS-ASTIP-2025-AII) (CAAS-ASTIP-2025-AII)

中央引导地方科技发展专项资金项目(ZYYD2022C14) (ZYYD2022C14)

计算机技术与发展

1673-629X

访问量0
|
下载量0
段落导航相关论文