| 注册
首页|期刊导航|现代电子技术|基于双流特征融合的配电房异常入侵检测研究

基于双流特征融合的配电房异常入侵检测研究

郑洋斌 侯北平 邵方坤 曹志文

现代电子技术2025,Vol.48Issue(19):84-91,8.
现代电子技术2025,Vol.48Issue(19):84-91,8.DOI:10.16652/j.issn.1004-373x.2025.19.014

基于双流特征融合的配电房异常入侵检测研究

Research on distribution room abnormal intrusion detection based on two-stream feature fusion

郑洋斌 1侯北平 2邵方坤 1曹志文1

作者信息

  • 1. 浙江科技大学 自动化与电气工程学院,浙江 杭州 310023
  • 2. 浙江科技大学 自动化与电气工程学院,浙江 杭州 310023||浙江科技大学 浙江省智能机器人感知与控制国际科技合作基地,浙江 杭州 310023
  • 折叠

摘要

Abstract

An anomaly intrusion detection method based on two-stream and two-stage feature fusion is proposed to avoid missed and false detections caused by changes in perspective,motion blur,occlusion,and other factors in the application of conventional intrusion detection methods in power distribution rooms.A lightweight two-stream network channel is constructed for feature extraction of appearance images and optical flow images.The two-stream and two-stage fusion strategy achieves effective fusion of two kinds of features.Experimental verification was conducted on the monitoring dataset.And then,the proposed method was applied to scene detection of power distribution rooms,and its detection accuracy was better than that of the YOLOv8n benchmark model.The experimental results show that the model has high generalization ability,can reduce duplicate data collection and annotation and optimize model training and deployment.Therefore,it has practical application value.

关键词

配电站房视频分析/目标检测/注意力机制/双流网络/自适应权重/复杂场景/YOLOv8n/CBAM

Key words

video analysis of distribution room/object detection/attention mechanism/two-stream network/adaptive weight/complex scene/YOLOv8n/CBAM

分类

信息技术与安全科学

引用本文复制引用

郑洋斌,侯北平,邵方坤,曹志文..基于双流特征融合的配电房异常入侵检测研究[J].现代电子技术,2025,48(19):84-91,8.

基金项目

浙江省"尖兵""领雁"研发攻关计划项目(2022C04012) (2022C04012)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文