| 注册
首页|期刊导航|现代电子技术|基于CAPTCNet的运动想象脑电分类

基于CAPTCNet的运动想象脑电分类

高洪睿 毕峰

现代电子技术2025,Vol.48Issue(19):92-98,7.
现代电子技术2025,Vol.48Issue(19):92-98,7.DOI:10.16652/j.issn.1004-373x.2025.19.015

基于CAPTCNet的运动想象脑电分类

Motor imagery EEG classification based on CAPTCNet

高洪睿 1毕峰2

作者信息

  • 1. 沈阳化工大学 计算机科学与技术学院,辽宁 沈阳 110142||辽宁省化工过程工业智能化技术重点实验室,辽宁 沈阳 110142
  • 2. 辽东学院 信息工程学院,辽宁 丹东 118003
  • 折叠

摘要

Abstract

This paper proposes a hybrid feature extraction and multi-scale parallel temporal convolutional network(CAPTCNet)based on coordinate attention,so as to fully utilize the various feature information in the motor imagery electroencephalogram(MI-EEG)signals and improve the decoding accuracy of MI-EEG signals.The network mainly consists of three modules.The hybrid feature extraction module extracts shallow temporal and spatial features from MI-EEG signals by multi-layer convolution.The coordinate attention module highlights the most valuable information in MI-EEG signals.The parallel multi-scale temporal convolutional module is used to extract deeper temporal features at different scales.The average accuracy rate of the designed network model tested on the dataset BCI Competition Ⅳ-2a was 84.14%,with an average Kappa coefficient of 0.79.The experimental results show that the proposed method has higher classification accuracy rate and more satisfactory Kappa coefficient in comparison with the other methods.The ablation experiment further demonstrated the effectiveness of each module,among which the parallel multi-scale temporal convolutional module contributed the most to the improvement of the model performance.

关键词

脑机接口/运动想象/卷积神经网络/时间卷积网络/深度学习/注意力机制

Key words

brain-computer interface/motor imagery/convolutional neural network/temporal convolutional network/deep learning/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

高洪睿,毕峰..基于CAPTCNet的运动想象脑电分类[J].现代电子技术,2025,48(19):92-98,7.

基金项目

辽宁省教育厅高校基本科研项目(LJKMZ20221756) (LJKMZ20221756)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文