西南林业大学学报2025,Vol.45Issue(9):147-154,8.DOI:10.11929/j.swfu.202408024
基于深度学习的无标签超分辨率土地覆盖制图研究
Research on Label-free Super-resolution Land Cover Mapping Based on Deep Learning
摘要
Abstract
In this study,we propose a deep learning-based unlabeled land cover mapping method to achieve 2 m resolution land cover mapping in Guangze County,Fujian Province,without local high-resolution labels by integrating label super-resolution(SR)and Instance Batch Normalized Network(IBN-Net).The results show that label super-resolution can be achieved using the improved fully convolutional neural network(FCN)model,which upgrades the low-resolution labels to high-resolution and effectively improves the classification accuracy.The IBN-Net network enhances the generalization ability of the model and significantly improves the effectiveness of cross-domain applications.Compared with endogenous low-resolution labels,using high-precision exogenous la-bels improved the overall accuracy of the model in Glossy County by 2.55%to 85.48%.The method in this study significantly improves the accuracy of land cover mapping without matching labels,which can provide effective technical support for regional ecological monitoring and management.关键词
土地覆盖制图/标签超分辨率/深度学习/FCN网络/IBN网络Key words
land cover mapping/label super-resolution/deep learning/fully convolutional neural network/instance batch normalization network分类
天文与地球科学引用本文复制引用
汤媛媛,严恩萍,唐玉宾,聂小力,聂平静,亓梦茹..基于深度学习的无标签超分辨率土地覆盖制图研究[J].西南林业大学学报,2025,45(9):147-154,8.基金项目
武夷山重点地区生态修复综合调查项目(DD20230479)资助 (DD20230479)
南平市典型红壤区地表基质调查项目(DD20220865)资助 (DD20220865)
高植被密度区隐匿目标植被-土壤特征光谱指数分类与识别机理研究项目(KC20220013)资助 (KC20220013)
洞庭湖湿地生态修复综合调查项目(DD20230478)资助 (DD20230478)
东部平原湖区南部湖泊调查项目(DD20230506)资助 (DD20230506)
大别山区东段生态修复综合调查项目(DD20242416)资助. (DD20242416)