| 注册
首页|期刊导航|现代应用物理|机器学习在高分子气体分离膜研制中的应用进展

机器学习在高分子气体分离膜研制中的应用进展

安少杭 马梦瑶 盛毓强 陈占营 刘蜀疆 常印忠 李奇 王世联

现代应用物理2025,Vol.16Issue(4):26-36,11.
现代应用物理2025,Vol.16Issue(4):26-36,11.DOI:10.12061/j.issn.2095-6223.202501012

机器学习在高分子气体分离膜研制中的应用进展

Application of Machine Learning in the Development of Polymer Gas Separation Membranes

安少杭 1马梦瑶 1盛毓强 1陈占营 1刘蜀疆 1常印忠 1李奇 1王世联1

作者信息

  • 1. 禁核试北京国家数据中心和北京放射性核素实验室,北京 100085
  • 折叠

摘要

Abstract

This paper summarizes the research progress on the application of machine learning in the development of polymer gas separation membranes.Representative algorithms including support vector machines,decision trees,random forests and deep learning,are introduced.The general process for applying machine learning to materials research is outlined,and the primary methods for dataset construction and material properties are summarized.The advancements in machine learning for screening polymer gas separation membrane materials,analyzing structure-performance relationships,and predicting performance,are highlighted.Finally,future research directions are discussed,focusing on machine learning-assisted investigations of gas transfer mechanisms and inverse design of membrane structures.

关键词

机器学习/深度学习/高分子/气体分离膜/构效分析

Key words

machine learning/deep learning/polymer/gas separation membrane/structure-performance analysis

分类

通用工业技术

引用本文复制引用

安少杭,马梦瑶,盛毓强,陈占营,刘蜀疆,常印忠,李奇,王世联..机器学习在高分子气体分离膜研制中的应用进展[J].现代应用物理,2025,16(4):26-36,11.

基金项目

国家自然科学基金资助项目(12205126) (12205126)

现代应用物理

2095-6223

访问量0
|
下载量0
段落导航相关论文