| 注册
首页|期刊导航|中国医疗设备|基于DR放射组学预测Ⅰ-Ⅱ期股骨头缺血性坏死的初步研究

基于DR放射组学预测Ⅰ-Ⅱ期股骨头缺血性坏死的初步研究

张文娟 魏胜梅 李亮杰 蔡德春 周广全 焦智明 敬洋

中国医疗设备2025,Vol.40Issue(9):26-32,7.
中国医疗设备2025,Vol.40Issue(9):26-32,7.DOI:10.3969/j.issn.1674-1633.20241272

基于DR放射组学预测Ⅰ-Ⅱ期股骨头缺血性坏死的初步研究

Preliminary Study on Prediction of Stage Ⅰ-Ⅱ Osteonecrosis of the Femoral Head Based on Digital Radiography Radiomics

张文娟 1魏胜梅 2李亮杰 3蔡德春 4周广全 5焦智明 1敬洋6

作者信息

  • 1. 喀什地区第一人民医院 数据管理中心,新疆 喀什 844000
  • 2. 喀什地区第一人民医院信息工程中心,新疆 喀什 844000
  • 3. 喀什地区第一人民医院肿瘤内科,新疆 喀什 844000
  • 4. 广州中医药大学第一附属医院影像中心,广东 广州 510000
  • 5. 广州中医药大学第一附属医院网络数据信息科,广东 广州 510000
  • 6. 慧影医疗科技(北京)有限公司,北京 100080
  • 折叠

摘要

Abstract

Objective To predict stageⅠ-Ⅱosteonecrosis of the femoral head(ONFH)through radiomics nomograph based on digital radiography(DR)of the hip joint,so as to expand the application scope of conventional DR in the assessment of phase Ⅰ-Ⅱ ONFH.Methods Sixty-one patients with ONFH and 24 healthy volunteers were selected as the research subjects.All patients and healthy volunteers underwent DR and MRI scans of the hip joint.A total of 1409 radiomics features were extracted from the artificially labeled regions of interest in DR images.Feature selection was carried out using the minimum absolute contraction selection operator regression method to construct a multilayer perceptron(MLP)and support vector machine(SVM).The two machine learning classification models were used for ONFH detection.Combining radiomics scores and independent demographic data,radiomics nomoplots were established through logistic regression analysis,and the diagnostic performance of all models was evaluated by indicators such as the receiver operating characteristic curve and its area under the curve(AUC),accuracy,specificity and sensitivity.Results All the research subjects were randomly divided into the training set(n=58)and the validation set(n=27).In the validation set,the AUC of the MLP and SVM radiomics models was 0.980 and 0.954 respectively,and the AUC of the radiomics nomogram was 0.981.Conclusion Machine learning based on the radiomics characteristics of DR is helpful for screening high-risk populations of stage Ⅰ-Ⅱ ONFH.

关键词

股骨头缺血性坏死/DR/放射组学/机器学习/诺莫图/多层感知器/支持向量机

Key words

osteonecrosis of the femoral head/digital radiography(DR)/radiomics/machine learning/Nomotu/multilayer perceptron(MLP)/support vector machine(SVM)

分类

医药卫生

引用本文复制引用

张文娟,魏胜梅,李亮杰,蔡德春,周广全,焦智明,敬洋..基于DR放射组学预测Ⅰ-Ⅱ期股骨头缺血性坏死的初步研究[J].中国医疗设备,2025,40(9):26-32,7.

基金项目

新疆维吾尔自治区自然科学基金项目(2022D01C09) (2022D01C09)

新疆维吾尔自治区科技支疆项目计划(指令性)项目(2019E0286) (指令性)

喀什地区第一人民医院"珠江学者·天山英才"合作专家工作室创新团队计划(KDYY202021). (KDYY202021)

中国医疗设备

1674-1633

访问量0
|
下载量0
段落导航相关论文