| 注册
首页|期刊导航|中国城市林业|基于街景图像的南京市市区美景度评估及驱动机制时空演变

基于街景图像的南京市市区美景度评估及驱动机制时空演变

许沉风 李敏 胡一可 耿星 冯紫若 程岩 雒腾宇

中国城市林业2025,Vol.23Issue(4):61-71,11.
中国城市林业2025,Vol.23Issue(4):61-71,11.DOI:10.12169/zgcsly.2025.03.11.0002

基于街景图像的南京市市区美景度评估及驱动机制时空演变

Spatiotemporal Evolution of Scenic Beauty Estimation and Its Driving Mechanisms in Urban Area of Nanjing Based on Street View Images

许沉风 1李敏 2胡一可 1耿星 3冯紫若 4程岩 5雒腾宇6

作者信息

  • 1. 天津大学建筑学院 天津 300072
  • 2. 南京林业大学风景园林学院 南京 210037
  • 3. 伦敦大学学院巴特利特建筑环境学院 伦敦 NW1 9HZ
  • 4. 重庆大学建筑城规学院 重庆 400030
  • 5. 清华大学建筑学院 北京 100084
  • 6. 华中科技大学建筑与城市规划学院 武汉 430074
  • 折叠

摘要

Abstract

[Objective]This study aims to estimate the scenic beauty(SB)of urban street in Nanjing in a scientific and intelligent way and investigate its driving mechanisms,thereby offering theoretical guidance for future street design and management.[Method]Street view images from 2014 to 2022 are collected through web scraping,and visual elements are extracted using the DeepLabV3+model.A ResNet50-based model is constructed to train and predict SB in different areas and analyze their spatiotemporal dynamics.Four driving factors are constructed,including Green View Index(GVI),Sky Openness Index(SOI),Interface Enclosure Index(IEI),and Motor Vehicle Richness Index(MVRI),and the driving mechanisms of SB on the global and local scales and their characteristics are examined using XGBoost-SHAP and Geographically Weighted Random Forest(GWRF)model,respectively.[Result]1)Areas with very low and relatively low SB areas have declined in size over time,while the areas with other levels of SB have generally increased;2)GVI is the most influential factor to SB in 2014-2022.IEI and SOI emerge as dominant factors in 2016 and 2022,respectively,while MVRI consistently makes the weakest contribution;3)GVI exerts a positive influence on SB,whereas SOI and IEI show mixed but generally negative effects,and MVRI exhibit both positive and negative influences;and 4)GVI has the broadest spatial impact in 2014,2015,2019 and 2021,while the influence of other factors varies temporally.[Conclusion]SB in Nanjing city core has improved over time,with GVI identified as the key driver.The SB driving mechanisms demonstrate significant spatial and temporal complexity,and the combination of XGBoost-SHAP and GWRF models proves effective in enhancing the SB interpretability at both global and local levels.

关键词

美景度/街景图像/DeepLabV3+/XGBoost-SHAP/地理加权随机森林

Key words

scenic beauty/street view image/DeepLabV3+/XGBoost-SHAP/geographically weighted random forest

引用本文复制引用

许沉风,李敏,胡一可,耿星,冯紫若,程岩,雒腾宇..基于街景图像的南京市市区美景度评估及驱动机制时空演变[J].中国城市林业,2025,23(4):61-71,11.

基金项目

国家自然科学基金重点项目(52038007) (52038007)

中国城市林业

1672-4925

访问量0
|
下载量0
段落导航相关论文