首页|期刊导航|中国循证儿科杂志|基于MRI的影像组学特征与新生儿缺氧缺血性脑病临床分度间的相关性分析

基于MRI的影像组学特征与新生儿缺氧缺血性脑病临床分度间的相关性分析OA北大核心

Correlation analysis between MRI-based radiomics features and clinical grading of neonatal hypoxic-ischemic encephalopathy

中文摘要英文摘要

背景 早期识别可能发展为中重度新生儿缺氧缺血性脑病(HIE)的患儿是目前临床关注的重点.既往结合患儿临床状态和临床标志物的评估作用有限.目的 探究HIE患儿基底节、丘脑部位的影像组学特征与HIE临床分度的相关性.设计 回顾性队列研究.方法 回顾性纳入2013年1月至2021年12月复旦大学附属儿科医院新生儿科诊断为HIE的患儿为队列人群,并由临床划分HIE的分度.将数据集根据8∶2的比例随机分为训练集和验证集,采集出生1周内头颅MRI的轴向T1加权图像(T1WI)和T2加权图像(T2WI).在MRI的T1WI和T2WI序列上,沿基底节和丘脑区域的最大面积层面勾画感兴趣区(ROI).分别基于T1WI、T2WI及T1WI+T2WI的联合模态,通过特征筛选与降维构建三个影像组学标签,并进行线性拟合计算Rad-score.基于影像组学模型的Rad-score与临床危险因素,建立预测HIE轻度和中重度的列线图.主要结局指标 列线图在训练集和验证集的AUC.结果 151例HIE患儿纳入本研究.男79例,女41例,平均胎龄(39.5±1.4)周,平均出生体重(3 136±491)g.HIE轻度57例,中重度94例.训练集120例,验证集31例.T1WI+T2WI的影像组学模型优于单独的T1WI、T2WI序列上的影像组学模型,AUC值在训练集和验证集中分别为0.936(95%CI:0.891~0.981)和0.815(95%CI:0.657~0.973).基于Rad-score和临床独立危险因素构建的列线图,在训练集和验证集的AUC分别为0.924(95%CI:0.871~0.997)和0.849(95%CI:0.704~0.994).校正曲线表明列线图对HIE临床分度的预测与真实情况拟合度较高.结论 基于T1WI与T2WI结合的MRI基底节、丘脑部位的影像组学特征与HIE的临床分度相关.本研究构建的影像组学模型以及列线图均能较为准确地用于HIE轻度和中重度的个体化预测.

Background Early identification of children who may develop moderate to severe neonatal hypoxic-ischemic en-cephalopathy(HIE)is a current research focus.The previous reliance on the evaluation of the clinical status of children and other clinical markers has limited effect.Objective To establish a radiomics model by radiomics methods to explore the correlation be-tween the radiomics characteristics of the basal ganglia and thalamus of HIE patients and the clinical grading of HIE.Design Co-hort study.Methods This study retrospectively analyzed 151 HIE patients diagnosed between January 2013 and December 2021,and the grading of HIE was divided clinically.On the T1WI and T2WI sequences of MRI,the region of interest(ROI)was outlined along the maximum area of the basal ganglia and thalamus.Three radiomics labels(based on T1WI,T2WI and the combined mo-dality of T1WI+T2WI,respectively)were constructed through feature screening and dimensionality reduction,and the Rad-score was calculated by linear fitting.Based on the Rad-score of the radiomics model and clinical risk factors,a nomogram was estab-lished to predict mild,moderate and severe HIE.Main outcome measures AUC of the nomogram in the training set and the test set.The calibration curve was used to evaluate the fit between the nomogram prediction of HIE clinical grading and the actual situation.Results Compared with the performance of the radiomics model based on the separate T1WI and T2WI sequences,the radiomics model combining T1WI and T2WI was better.The nomogram constructed based on Rad-score and clinical independent risk factors had an AUC of 0.924(95%CI:0.871-0.997)and 0.849(95%CI:0.704-0.994)in the training group and the test group,respectively.The calibration curve showed that the nomogram had a high fit between the prediction of HIE clinical grading and the actual situation.Conclusion The radiomics features of the MRI basal ganglia and thalamus based on the combination of T1WI and T2WI are related to the clinical grading of HIE.The constructed imaging omics model and nomogram can be used for in-dividualized prediction of mild,moderate and severe HIE with high accuracy.

夏雅琴;乔中伟;杨鸣姝;钱天阳;周佳雨;柏梅;罗思琪;卢朝刚;朱英豪;王来栓

复旦大学附属儿科医院 放射科,上海,201102复旦大学附属儿科医院 放射科,上海,201102复旦大学附属儿科医院 放射科,上海,201102复旦大学附属儿科医院 新生儿科,国家卫生健康委员会新生儿疾病重点实验室,上海,201102复旦大学附属儿科医院 新生儿科,国家卫生健康委员会新生儿疾病重点实验室,上海,201102复旦大学附属儿科医院 放射科,上海,201102复旦大学附属儿科医院 放射科,上海,201102复旦大学附属儿科医院 放射科,上海,201102香港大学计算与数据科学学院复旦大学附属儿科医院 新生儿科,国家卫生健康委员会新生儿疾病重点实验室,上海,201102

医药卫生

影像组学新生儿缺氧缺血性脑病临床分度磁共振成像列线图

Imaging omicsNeonatal hypoxic-ischemic encephalopathyClinical classificationMagnetic resonance imagingNomogram

《中国循证儿科杂志》 2025 (4)

259-264,6

10.3969/j.issn.1673-5501.2025.04.004

评论