| 注册
首页|期刊导航|中南大学学报(自然科学版)|基于SVR和NSGA-Ⅱ算法的烧结矿余热回收运行参数优化

基于SVR和NSGA-Ⅱ算法的烧结矿余热回收运行参数优化

郝学智 赵亮 吴问昌 张晓虎 冯军胜 董辉

中南大学学报(自然科学版)2025,Vol.56Issue(8):3186-3199,14.
中南大学学报(自然科学版)2025,Vol.56Issue(8):3186-3199,14.DOI:10.11817/j.issn.1672-7207.2025.08.009

基于SVR和NSGA-Ⅱ算法的烧结矿余热回收运行参数优化

Optimization of operating parameters for sinter waste heat recovery based on SVR and NSGA-Ⅱ algorithms

郝学智 1赵亮 1吴问昌 1张晓虎 1冯军胜 2董辉1

作者信息

  • 1. 东北大学冶金学院辽宁省流程工业节能与绿色低碳技术工程研究中心,辽宁沈阳,110819
  • 2. 安徽建筑大学环境与能源工程学院,安徽 合肥,230601
  • 折叠

摘要

Abstract

Achieving near-zero emissions in sintering annular coolers is the key to realize the ultimate energy efficiency in the steel industry.The synergistic effect of temperature exergy and pressure exergy constrains the waste heat recovery capacity.An optimization method integrating CFD and intelligent algorithms were proposed to determine the operating parameters of the annular cooler when temperature exergy and pressure exergy were at the maximun value.Firstly,a CFD model was used to obtain the benchmark dataset.The sparrow search algorithm was employed to optimize the hyperparameters of the support vector regression,constructing a high-precision exergy prediction model.Furtherly,the nonlinear influence of parameters was analyzed through feature importance and partial dependence plots.Finally,the NSGA-Ⅱ algorithm was applied to obtain the Pareto-optimal solution set.The results reveal that the cooling gas inlet flow rate is the most significant factor affecting exergy.Increasing the cooling gas inlet flow rate and the material layer height can significantly increase the predicted temperature exergy and decrease the predicted pressure exergy.Maximizing flow rate and minimizing particle size enable exergy to reach the extreme values.The best parameter combination of multi-objective optimization yields is cooling gas inlet flow rate of 37.44×104 m3·h-1,particle size of 0.028 m,material layer height of 1.42 m,and power recovery section length of 81.20 m.The temperature exergy of the optimal point of multi-objective optimisation is improved by 53.3%compared with the optimisation results of orthogonal experiments,and the pressure exergy is reduced by 74.1%.

关键词

烧结矿/余热回收/机器学习/多目标优化

Key words

sinter/waste heat recovery/machine learning/multi-objective optimization

分类

能源科技

引用本文复制引用

郝学智,赵亮,吴问昌,张晓虎,冯军胜,董辉..基于SVR和NSGA-Ⅱ算法的烧结矿余热回收运行参数优化[J].中南大学学报(自然科学版),2025,56(8):3186-3199,14.

基金项目

中国宝武低碳冶金创新基金资助项目(BWLCF202307)(Project(BWLCF202307)supported by the Baowu Low Carbon Metallurgy Innovation Foundation of China) (BWLCF202307)

中南大学学报(自然科学版)

OA北大核心

1672-7207

访问量0
|
下载量0
段落导航相关论文