| 注册
首页|期刊导航|北京测绘|一种改进U-Net模型的无人机影像道路提取方法

一种改进U-Net模型的无人机影像道路提取方法

尧燕 张恒僖

北京测绘2025,Vol.39Issue(8):1123-1128,6.
北京测绘2025,Vol.39Issue(8):1123-1128,6.DOI:10.19580/j.cnki.1007-3000.2025.08.006

一种改进U-Net模型的无人机影像道路提取方法

An improved U-Net model for road extraction from UAV imagery

尧燕 1张恒僖2

作者信息

  • 1. 江西省国土空间调查规划研究院,江西 南昌 330025
  • 2. 江西省建筑设计研究总院集团有限公司,江西 南昌 330046
  • 折叠

摘要

Abstract

To address the issues of low automation,information loss,and discontinuity at complex intersections in unmanned aerial vehicle(UAV)imagery road extraction,this paper proposed an improved U-Net model for road extraction,which can effectively enhance the accuracy of road recognition.First,the improved U-Net model integrated the Res2Net structure,replacing the traditional U-Net convolution layers,which enhanced feature extraction precision and improved the sampling depth.Second,the model added the convolution block attention module(CBAM)attention mechanism,recalibrat-ing both spatial and channel layers,and further improved model performance through fine-tuning of parameters.Finally,the model incorporated the improved dense atrous spatial pyramid pooling(DenseASPP)module,which achieved the stitching of lower-level details,thereby strengthening the ability to capture contextual information of road areas.Experimental valida-tion demonstrated the effectiveness of the proposed model.The results show that the accuracy,recall rate,F1 score,and intersection over union(IoU)of the road extraction from UAV imagery are 90.18%,85.85%,87.96%,and 73.56%,respectively,outperforming the comparison models and reflecting the superiority of the proposed model.

关键词

无人机影像/道路提取/深度学习/注意力机制

Key words

unmanned aerial vehicle(UAV)imagery/road extraction/deep learning/attention mechanism

分类

天文与地球科学

引用本文复制引用

尧燕,张恒僖..一种改进U-Net模型的无人机影像道路提取方法[J].北京测绘,2025,39(8):1123-1128,6.

基金项目

江西省自然科学基金(20232ACB204032) (20232ACB204032)

北京测绘

1007-3000

访问量0
|
下载量0
段落导航相关论文