| 注册
首页|期刊导航|大地测量与地球动力学|基于LR-KF-LSTM模型的差分码偏差预测分析

基于LR-KF-LSTM模型的差分码偏差预测分析

廖思明 尚俊娜 苏明坤

大地测量与地球动力学2025,Vol.45Issue(9):915-921,7.
大地测量与地球动力学2025,Vol.45Issue(9):915-921,7.DOI:10.14075/j.jgg.2024.10.476

基于LR-KF-LSTM模型的差分码偏差预测分析

Prediction of Differential Code Bias Based on LR-KF-LSTM Model

廖思明 1尚俊娜 1苏明坤1

作者信息

  • 1. 杭州电子科技大学通信工程学院,杭州市白杨街道2号大街1158号,310018
  • 折叠

摘要

Abstract

The presence of differential code bias(DCB)can affect the accuracy of total electron content(TEC)calculations and pseudorange observations,thereby impacting navigation,positioning,timing,and meteorological research results.In order to accurately estimate DCB,this paper analyzes the tem-poral variations of GPS inter-frequency DCB data provided by the Chinese Academy of Sciences(CAS)from 2021 to 2022 and proposes an LR-KF-LSTM combined model for precise prediction and analysis of DCB.Experimental results indicate that the average absolute percentage error of this method is less than 1.9%,the average absolute error is less than 0.03 ns,and the root mean square error is less than 0.04 ns.Compared with the LSTM model,BP neural network model,and the DCB values from the CAS product,the combined model shows better prediction performance under different solar activ-ity and geomagnetic conditions.This combined network model can effectively predict satellite DCB and also provides a reference for addressing the issue of single-day or multi-day missing data in the DCB data CAS products.

关键词

差分码偏差/长短期记忆神经网络/卡尔曼滤波/线性回归/导航定位

Key words

differential code bias(DCB)/long short-term memory(LSTM)neural network/Kalman filter(KF)/linear regression(LR)/navigation positioning

分类

天文与地球科学

引用本文复制引用

廖思明,尚俊娜,苏明坤..基于LR-KF-LSTM模型的差分码偏差预测分析[J].大地测量与地球动力学,2025,45(9):915-921,7.

基金项目

浙江省教育厅科研项目(Y202455360). Scientific Research Project of the Education Department of Zhejiang Province,No.Y202455360. (Y202455360)

大地测量与地球动力学

OA北大核心

1671-5942

访问量0
|
下载量0
段落导航相关论文