首页|期刊导航|电力需求侧管理|计及自适应接入的家用空调协同调控策略

计及自适应接入的家用空调协同调控策略OA

Collaborative control strategy for household air conditioners with adaptive access

中文摘要英文摘要

针对异构家用空调中设备协议多样且不兼容引发的通信壁垒以及实时调控计算效率低的问题,提出一种计及自适应接入的家用空调协同调控策略.首先,设计了家用空调信息交互架构,并提出自适应接入方法,实现多协议空调的统一接入.然后,开发了深度强化学习多空调协同调控策略,引入Soft-max抽样策略和优先经验回放机制改进了MAD3QN算法,提出了SMPER-MAD3QN算法.最后,基于SMPER-MAD3QN实现集中式训练分布式执行,该算法允许多个空调协同参与调控.仿真结果显示多协议家用空调信息交互丢包率为0.36%,交互时延均低于25 ms,表明自适应接入可大幅缩短实时决策时间,实现了对多协议家用空调的统一管理和控制.同时,所提算法在保证用户舒适度的前提下,实现多空调协同参与需求响应,具有良好的鲁棒性,能够提升需求侧可调度资源的灵活性和可靠性.

A collaborative control strategy for domestic air conditioners with adaptive access is proposed addressing communication barri-ers caused by diverse and incompatible device protocols in heterogeneous domestic air conditioners,along with low computational efficien-cy in real-time regulation.First,the domestic air conditioner information interaction architecture is constructed,and the adaptive access method is proposed on this basis.Then,the deep reinforcement learning multi-conditioner collaborative control strategy is developed,and the soft-max sampling strategy and the prioritized experience replay mechanism are introduced to improve the MAD3QN algorithm,and the SMPER-MAD3QN algorithm is proposed.Finally,a centralized training with decentralized execution is implemented based on SMPER-MAD3QN,which allows multiple air conditioners to collaboratively participate in the regulation of the algorithm.The simulation results measured that the packet loss rate of multi-protocol domestic air conditioner information interaction is 0.36%,and the interaction latency is lower than 25ms,which indicates that the adaptive access can significantly shorten the real-time decision-making time and realize the unified management and control of multi-protocol domestic air conditioner.Meanwhile,the proposed algorithm realizes the collaborative participation of multiple air conditioners in demand response(DR)under the premise of guaranteeing the comfort of users,and the algo-rithm has excellent robustness,which improves the flexibility and reliability of the dispatchable resources on the demand side.

石坤;胡祥;陈宋宋;祁兵;樊其锋;宫飞翔;刘颖

需求侧多能互补优化与供需互动技术北京市重点实验室(中国电力科学研究院有限公司),北京 100192华北电力大学 电气与电子工程学院,北京 102206需求侧多能互补优化与供需互动技术北京市重点实验室(中国电力科学研究院有限公司),北京 100192华北电力大学 电气与电子工程学院,北京 102206广东美的制冷设备有限公司,广东 佛山 528311需求侧多能互补优化与供需互动技术北京市重点实验室(中国电力科学研究院有限公司),北京 100192国网江苏省电力有限公司 营销服务中心,南京 210019

信息技术与安全科学

家用空调自适应接入深度强化学习集中式训练分布式执行需求响应

household air conditioneradaptive accessdeep reinforcement learningcentralized training with decentralized executionde-mand response

《电力需求侧管理》 2025 (5)

43-49,7

国家电网有限公司科技项目(5400-202355570A-3-2-ZN)

10.3969/j.issn.1009-1831.2025.05.007

评论