| 注册
首页|期刊导航|高压电器|基于改进MPE和K-medoids的变压器绕组松动故障诊断

基于改进MPE和K-medoids的变压器绕组松动故障诊断

马宏忠 薛健侗 倪一铭 万可力 迮恒鹏

高压电器2025,Vol.61Issue(9):73-80,8.
高压电器2025,Vol.61Issue(9):73-80,8.DOI:10.13296/j.1001-1609.hva.2025.09.010

基于改进MPE和K-medoids的变压器绕组松动故障诊断

Diagnosis on Looseness of Transformer Winding Based on Improved MPE and K-medoids Algorithm

马宏忠 1薛健侗 1倪一铭 1万可力 1迮恒鹏1

作者信息

  • 1. 河海大学电气与动力工程学院,南京 211100
  • 折叠

摘要

Abstract

For effectively diagnosing the looseness of transformer winding,a looseness diagnosis method of transform-er winding based on the improved multiscale permutation entropy(MPE)and K-medoids algorithm is proposed for the vibration signal of transformer during the on-load operation.First,the MPE algorithm based on particle swarm op-timization(PSO)is used to extract the features of the transformer winding signals under different state of winding so to reduce the influence of parameter settings in the MPE algorithm on the accuracy of fault type ientification.Then,the K-medoids clustering algorithm is used to diagnose the looseness of transformer winding and complete the fault classification and identification.The simulation experiment results of the looseness of winding of a 10 kV transformer show that the MPE values of the transformer vibration signals under different winding states are significantly different after the optimization of the PSO parameters.The diagnosis effect is superior to that of the traditional MPE algorithm with empirical parameters,and the stability has been improved.

关键词

变压器/绕组松动诊断/粒子群优化的MPE算法/特征提取/K-medoids算法

Key words

transformer/diagnosis of winding looseness/particle swarm optimized MPE algorithm/feature extrac-tion/K-medoids algorithm

引用本文复制引用

马宏忠,薛健侗,倪一铭,万可力,迮恒鹏..基于改进MPE和K-medoids的变压器绕组松动故障诊断[J].高压电器,2025,61(9):73-80,8.

基金项目

国家自然科学基金项目(51577050).Project Supported by National Natural Science Foundation of China(51577050). (51577050)

高压电器

OA北大核心

1001-1609

访问量0
|
下载量0
段落导航相关论文