| 注册
首页|期刊导航|华东交通大学学报|基于深度学习的列车制动盘剩余使用寿命预测研究

基于深度学习的列车制动盘剩余使用寿命预测研究

朱海燕 许晋华 徐晨钊 李祥坤 周生通

华东交通大学学报2025,Vol.42Issue(4):48-60,13.
华东交通大学学报2025,Vol.42Issue(4):48-60,13.

基于深度学习的列车制动盘剩余使用寿命预测研究

Research on Prediction of Remaining Useful Life of Train Brake Disc Based on Deep Learning

朱海燕 1许晋华 1徐晨钊 1李祥坤 1周生通1

作者信息

  • 1. 华东交通大学机电与车辆工程学院,江西 南昌 330013
  • 折叠

摘要

Abstract

To achieve accurate prediction of the remaining useful life(RUL)of brake discs,ensure train braking safety,and optimize economical maintenance,this paper proposes a prediction model based on the fusion of self-attention mechanism and long short-term memory network(BiLSTM-SA),which takes the crack propagation life as the division basis.Firstly,the test data of brake discs are collected and the working conditions are calibrat-ed,and a thermal-mechanical coupling finite element model is established to obtain the simulation dataset.Sec-ondly,a Time-GAN neural network is constructed,which enhances data through a double-layer LSTM generator and a physical constraint discriminator.Its distribution similarity,root mean square error and coefficient of deter-mination are significantly better than traditional models.Finally,the BiLSTM-SA fusion prediction model is pro-posed,which uses bidirectional LSTM and self-attention mechanism to capture temporal dependencies and key features.In the prediction of single expanding cracks,the RMSE is reduced by 49.8%and 46.5%compared with the traditional LSTM and TCN-LSTM,respectively.In complex working conditions,the RMSE and Score are optimized by 25.5%and 51.1%,respectively,significantly improving the prediction accuracy and robustness.This study can provide a reliable technical solution for condition monitoring and preventive maintenance of high-speed train brake discs.

关键词

制动盘/疲劳裂纹/剩余寿命预测/时间序列生成对抗网络/自注意力机制

Key words

brake disc/fatigue crack/remaining life prediction/time series generation adversarial network/self-attention mechanism

分类

交通工程

引用本文复制引用

朱海燕,许晋华,徐晨钊,李祥坤,周生通..基于深度学习的列车制动盘剩余使用寿命预测研究[J].华东交通大学学报,2025,42(4):48-60,13.

基金项目

国家自然科学基金项目(52162045) (52162045)

江西省自然科学基金重点项目(20232ACB204022) (20232ACB204022)

轨道交通运载系统全国重点实验室开放课题(RVL2403) (RVL2403)

江西省2023年度研究生创新专项资金项目(YC2023-S464) (YC2023-S464)

华东交通大学学报

1005-0523

访问量0
|
下载量0
段落导航相关论文