| 注册
首页|期刊导航|湖北民族大学学报(自然科学版)|小样本目标检测模型在电力行业的应用与发展趋势

小样本目标检测模型在电力行业的应用与发展趋势

高林 郜世佳 焦思航 刘华国

湖北民族大学学报(自然科学版)2025,Vol.43Issue(3):351-356,6.
湖北民族大学学报(自然科学版)2025,Vol.43Issue(3):351-356,6.DOI:10.13501/j.cnki.42-1908/n.2025.09.013

小样本目标检测模型在电力行业的应用与发展趋势

Application and Development Trends of Few-shot Object Detection Model in the Power Industry

高林 1郜世佳 1焦思航 1刘华国2

作者信息

  • 1. 湖北民族大学 智能科学与工程学院,湖北 恩施 445000
  • 2. 桂林航天工业学院 机电工程学院,广西 桂林 541004
  • 折叠

摘要

Abstract

To address the issue of limited generalization in traditional object detection models due to scarce complex defect samples and diverse fault types in the power industry,the application status of few-shot object detection(FSOD)models across the five stages of power industry,namely,power generation,transmission,transformation,distribution,and consumption was systematically studied,and corresponding development trends were analyzed.It was found that FSOD models exhibited excellent performance in defect detection,fault detection,equipment monitoring,and safety inspection through strategies such as meta-learning,transfer learning,data augmentation,and metric learning.However,challenges were encountered in model structure and perception under complex backgrounds,generalization and data fusion,and sample dependency and system engineering,necessitating further optimization.FSOD models could have development in model structure improvements,multimodal data fusion,and domain knowledge integration with system deployment optimization.This study provided an important reference for the deepen application of FSOD models in the power industry.

关键词

小样本/目标检测/深度学习/电力行业/检测精度

Key words

few-shot/object detection/deep learning/power industry/detection accuracy

分类

信息技术与安全科学

引用本文复制引用

高林,郜世佳,焦思航,刘华国..小样本目标检测模型在电力行业的应用与发展趋势[J].湖北民族大学学报(自然科学版),2025,43(3):351-356,6.

基金项目

国家自然科学基金项目(12464004,61562025) (12464004,61562025)

湖北民族大学校内科学研究项目(XN2317) (XN2317)

广西高校中青年教师科研基础能力提升项目(2024KY0816). (2024KY0816)

湖北民族大学学报(自然科学版)

2096-7594

访问量7
|
下载量0
段落导航相关论文