| 注册
首页|期刊导航|结构工程师|基于深度学习的水下混凝土结构表观缺陷智能化识别研究

基于深度学习的水下混凝土结构表观缺陷智能化识别研究

张东林 叶锡钧 陈德津 骆堪辉

结构工程师2025,Vol.41Issue(4):25-30,6.
结构工程师2025,Vol.41Issue(4):25-30,6.DOI:10.15935/j.cnki.jggcs.202504.0004

基于深度学习的水下混凝土结构表观缺陷智能化识别研究

Intelligent Identification of Apparent Defects in Underwater Structures Based on Deep Learning

张东林 1叶锡钧 1陈德津 1骆堪辉2

作者信息

  • 1. 广州大学土木与交通工程学院,广州 510000
  • 2. 广州市市维检测有限公司,广州 510000
  • 折叠

摘要

Abstract

Apparent defects in underwater concrete structures are significantly challenged by complex environmental factors including water turbidity,variable lighting conditions,and flow velocity.These interferences lead to difficulties in defect localization and low recognition accuracy during underwater inspections.To address these limitations,this study proposes an intelligent recognition framework based on deep learning.The methodology integrates three key components:generation of a multi-scenario defect database replicating complex underwater environments;application of small-sample expansion and image enhancement algorithms for robust preprocessing;implementation of the YOLOv5 target detection algorithm for multi-category defect identification and localization.Experimental results demonstrate that the proposed approach achieves a mean average precision(mAP)of 83%and a recognition precision exceeding 83%.This framework effectively mitigates accuracy degradation caused by underwater environmental complexities and limited sample sizes,providing a reliable technical solution for automated structural health monitoring of submerged infrastructure.

关键词

水下结构/表观缺陷/识别/YOLO算法/深度学习

Key words

underwater structures/apparent defects/identification/YOLO algorithm/deep learning

分类

建筑与水利

引用本文复制引用

张东林,叶锡钧,陈德津,骆堪辉..基于深度学习的水下混凝土结构表观缺陷智能化识别研究[J].结构工程师,2025,41(4):25-30,6.

基金项目

国家自然科学基金项目(51908136) (51908136)

结构工程师

1005-0159

访问量0
|
下载量0
段落导航相关论文