首页|期刊导航|结构工程师|混凝土构件表面裂缝分割的改进SegFormer方法

混凝土构件表面裂缝分割的改进SegFormer方法OA

Improved SegFormer Model for Surface Crack Segmentation in Concrete Components

中文摘要英文摘要

混凝土结构常常会产生表面裂缝,及时对这些表面裂缝进行检测对结构状况评估有重要意义.本文提出了一种改进SegFormer的方法,用于表面裂缝的分割.该方法利用SegFormer模型的网络架构和创新模块(CA),在解码器部分加入了坐标注意力机制模块,其中创新性地引入了沿对角线方向池化,显著提升了模型在像素级预测时对细长形状空间关系的理解能力.通过对公共数据集Concrete3k的实验结果进行对比,改进SegFormer模型展现出最高的IoU值,表明其在裂缝分割任务中表现最佳,在参数量较低的情况下,改进SegFormer模型仍能保持高性能.

Concrete structures commonly exhibit visible surface cracks and detecting these surface cracks is of great significance for structural condition assessment.This paper presents an improved attention mechanism mode for surface crack segmentation.The method leverages the network framework and innovative module(CA)of the improved attention mechanism mode,adds a coordinate attention module to the decoder,and by introducing pooling along the diagonal direction significantly enhances the model's understanding of elongated spatial relationships in pixel-level predictions.Comparative experiments on the public dataset Concrete3k demonstrate that the improved attention mechanism mode achieves the highest IoU value,indicating superior performance in crack segmentation tasks.Additionally,the improved attention mechanism mode maintains high performance with a relatively low parameter count.

龚玉磊;张亚丽;章红梅;王爱华

宿迁东枢纽建设发展有限公司,宿迁 223800宿迁东枢纽建设发展有限公司,宿迁 223800浙江大学建筑工程学院,杭州 310058上海市政工程设计研究总院(集团)有限公司,上海 200092

建筑与水利

混凝土构件表面裂缝图像分割改进SegFormer模型深度学习鲁棒性

concrete componentssurface cracksimage segmentationimproved attention mechanism modedeep learningrobustness

《结构工程师》 2025 (4)

31-40,10

国家自然科学基金(52378540)

10.15935/j.cnki.jggcs.202504.0005

评论