基于排列熵的CEEMDAN分解算法研究OA
Research on CEEMDAN Decomposition Algorithm Based on Permutation Entropy
自适应噪声完备集合经验模式分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)对复杂信号有着较好的分解能力.然而,CEEMDAN分解结果中仍然存在模态混淆和产生过多伪分量问题.针对以上问题,论文提出一种基于排列熵的自适应噪声完备集合经验模式分解(Permutation entropy based CEEMDAN,PECEEMDAN)方法.该方法在CEEMDAN对原始信号分解过程中嵌入排列熵阈值检测,分离出间歇和噪声信号,对剩余信号直接进行经验模式分解(Empirical Mode Decomposition,EMD).仿真信号及实测轴承信号的实验结果验证了PECEEM-DAN在抑制模态混淆、分解精度和故障特征频率提取方面有较好的优越性.
Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method has good decomposi-tion ability for complex signals.However,there are still mode confusion and too many pseudo components in CEEMDAN decomposi-tion results.To solve the above problems,this paper proposes a Permutation entropy based complete ensemble empirical mode de-composition with adaptive noise method(PECEEMDAN).This method embeds permutation entropy threshold detection in CEEM-DAN decomposition of the original signal,separates intermittent and noise signals,and directly performs empirical mode decomposi-tion(EMD)on the remaining signals.The experimental results of simulation signals and measured bearing signals verify that PECEEMDAN has better advantages in suppressing mode confusion,decomposition accuracy and fault feature frequency extraction.
邱林江;花小朋;徐森;孙鹏
盐城工学院信息工程学院 盐城 224051盐城工学院信息工程学院 盐城 224051盐城工学院信息工程学院 盐城 224051盐城工学院信息工程学院 盐城 224051
信息技术与安全科学
噪声模态混淆模式分解排列熵故障特征
noisemode mixingmode decompositionpermutation entropyfault characteristics
《计算机与数字工程》 2025 (7)
1800-1807,8
国家自然科学基金项目面上项目(编号:62076215)资助.
评论