| 注册
首页|期刊导航|计算机与数字工程|基于排列熵的CEEMDAN分解算法研究

基于排列熵的CEEMDAN分解算法研究

邱林江 花小朋 徐森 孙鹏

计算机与数字工程2025,Vol.53Issue(7):1800-1807,8.
计算机与数字工程2025,Vol.53Issue(7):1800-1807,8.DOI:10.3969/j.issn.1672-9722.2025.07.003

基于排列熵的CEEMDAN分解算法研究

Research on CEEMDAN Decomposition Algorithm Based on Permutation Entropy

邱林江 1花小朋 1徐森 1孙鹏1

作者信息

  • 1. 盐城工学院信息工程学院 盐城 224051
  • 折叠

摘要

Abstract

Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method has good decomposi-tion ability for complex signals.However,there are still mode confusion and too many pseudo components in CEEMDAN decomposi-tion results.To solve the above problems,this paper proposes a Permutation entropy based complete ensemble empirical mode de-composition with adaptive noise method(PECEEMDAN).This method embeds permutation entropy threshold detection in CEEM-DAN decomposition of the original signal,separates intermittent and noise signals,and directly performs empirical mode decomposi-tion(EMD)on the remaining signals.The experimental results of simulation signals and measured bearing signals verify that PECEEMDAN has better advantages in suppressing mode confusion,decomposition accuracy and fault feature frequency extraction.

关键词

噪声/模态混淆/模式分解/排列熵/故障特征

Key words

noise/mode mixing/mode decomposition/permutation entropy/fault characteristics

分类

信息技术与安全科学

引用本文复制引用

邱林江,花小朋,徐森,孙鹏..基于排列熵的CEEMDAN分解算法研究[J].计算机与数字工程,2025,53(7):1800-1807,8.

基金项目

国家自然科学基金项目面上项目(编号:62076215)资助. (编号:62076215)

计算机与数字工程

1672-9722

访问量4
|
下载量0
段落导航相关论文