| 注册
首页|期刊导航|计算机与数字工程|基于对抗性消除偏差的人工智能公平性决策增强算法

基于对抗性消除偏差的人工智能公平性决策增强算法

焦婉妮 刘浩锋

计算机与数字工程2025,Vol.53Issue(7):1812-1816,5.
计算机与数字工程2025,Vol.53Issue(7):1812-1816,5.DOI:10.3969/j.issn.1672-9722.2025.07.005

基于对抗性消除偏差的人工智能公平性决策增强算法

AI Fairness Decision Enhancement Algorithm Based On Adversarial Bias Elimination

焦婉妮 1刘浩锋1

作者信息

  • 1. 武汉数字工程研究所 武汉 430205
  • 折叠

摘要

Abstract

Artificial intelligence decision models often face ethical and legal challenges due to biases in training data,choice of algorithms,or their implementation,which not only may contravene social justice and legal norms but also may limit the univer-sality and quality assurance of the models.The paper presents a multidimensional adversarial debiasing method that employs adver-sarial learning mechanisms to enhance fairness and reduce biases in the models.Experimental results demonstrates that the multidi-mensional adversarial debiasing model achieves significant improvements of 7%~10%in fairness metrics,with reductions of 8%~11%in both equal opportunity difference and average odds parity difference.This paper applies adversarial learning to eliminate un-fairness in algorithmic decision-making,effectively balancing the model's predictive performance with fairness,and provides a sol-id theoretical foundation and practical pathway for developing more refined and practical fairness metrics and standardized fairness algorithms in the future.

关键词

对抗性消除偏差技术/算法公平性/伦理与法律挑战/人工智能应用

Key words

adversarial debiasing techniques/algorithmic fairness/ethical and legal challenges/AI applications

分类

信息技术与安全科学

引用本文复制引用

焦婉妮,刘浩锋..基于对抗性消除偏差的人工智能公平性决策增强算法[J].计算机与数字工程,2025,53(7):1812-1816,5.

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文