基于学情数据的用户画像推荐算法研究OA
Research on User Profile Recommendation Algorithm Based on Learning Situation Data
为实现个性化精准教学资源智能推荐,论文深入研究了算法的融合模型,将教务学情数据与个性化推荐相结合,对学生画像挖掘特征信息,实现更精准个性化自主学习推荐.论文侧重于对个性化推荐算法的研究,对SVM、LR、RF这三类二分类算法视为三个单机器学习方法,将其融合为新的强学习器,得出了基于集成学习的差异性联合表决算法,对用户学习情况进行个性化分析,从而根据不同用户的数据对用户的学情差异性标签进行表决分类,实现个性化学习推荐引导.最后通过学情数据抽取特征,用融合成新的表决算法构建评价体系,建立特征画像以及用户兴趣模型,实现了更为精准有效的推荐,对于提升个性化学习推荐引导具有一定的现实意义.
In order to achieve intelligent recommendation of personalized and accurate teaching resources,this paper has deep-ly studied the fusion model of algorithms.It combines educational administration and learning situation data with personalized recom-mendation,excavates feature information from student portraits,and achieves more accurate and personalized independent learning recommendation.This paper focuses on the research of personalized recommendation algorithms.The three categories of binary algo-rithms,namely SVM,LR and RF,are considered as three single machine learning methods.They are fused into a new strong learn-er,and a differential joint voting algorithm based on integrated learning is obtained.The user learning situation is personalized ana-lyzed,so that the user's learning difference tags are voted and classified according to the data of different users,thus a chieving per-sonalized learning recommendation guidance.Finally,it extractes features from the learning situation data,builts an evaluation sys-tem with the fusion of new voting algorithms,establishes feature portraits and user interest models,and achieves more accurate and effective recommendations,which has certain practical significance for improving personalized learning recommendation guidance.
黄承宁;孙洁;朱玉全
南京工业大学浦江学院 南京 211222南京工业大学浦江学院 南京 211222江苏大学 镇江 212013
信息技术与安全科学
个性化推荐算法模型机器学习学情数据用户画像
personalized recommendationalgorithm modelmachine learningacademic datauser portrait
《计算机与数字工程》 2025 (7)
1829-1835,1851,8
国家自然科学基金项目(编号:61702229)江苏省高等学校自然科学研究项目(编号:18KJD520001)南京工业大学浦江学院优秀青年骨干教师工程(编号:南工大浦校[2021]73号)资助.
评论