| 注册
首页|期刊导航|无线电通信技术|基于强化学习的无人机辅助高效能数据收集方法

基于强化学习的无人机辅助高效能数据收集方法

朱佳琳 张鹏浩 李南希 蒋峥 朱剑驰

无线电通信技术2025,Vol.51Issue(5):940-950,11.
无线电通信技术2025,Vol.51Issue(5):940-950,11.DOI:10.3969/j.issn.1003-3114.2025.05.007

基于强化学习的无人机辅助高效能数据收集方法

High-efficiency UAV-assisted Data Collection Method Leveraging Reinforcement Learning

朱佳琳 1张鹏浩 2李南希 1蒋峥 1朱剑驰1

作者信息

  • 1. 中国电信股份有限公司研究院,北京 102209
  • 2. 北京邮电大学 信息与通信工程学院,北京 100876
  • 折叠

摘要

Abstract

The Internet of Things(IoT),as one core area of 6G development,plays a crucial role in driving network architecture changes and supporting core application scenarios.However,IoT systems suffer from energy imbalances and short network lifecycles,which severely restrict the improvement of data collection efficiency.With the rise of Unmanned Aerial Vehicle(UAV)technology,its high maneuverability can effectively construct Line of Sight(LOS)communication links,thereby improving communication speed.This has great application value in data collection of IoT systems and can solve the problem of low data collection efficiency caused by the short lifecycle of IoT networks.To this end,UAVs are used to collect data from ground IoT devices and build a data collection and transmission link for air-to-ground collaboration.An intelligent data collection method based on Deep Reinforcement Learning(DRL)is proposed.In addition,a predictive neural network is designed to further improve data collection efficiency by predicting network data at the Base Station(BS)side,thereby achieving the goal of reducing IoT device energy consumption and extending network lifespan.Sim-ulation results show that the proposed data collection algorithm has good performance advantages in terms of device energy consumption and energy balance,and is superior to traditional data collection algorithms.At the same time,the proposed data collection network ar-chitecture can extend the network lifespan by 1.2 times when the predicted data accounts for 12.5%.In addition,simulations have shown that the designed predictive neural network outperforms other compared networks in terms of Mean Squared Error(MSE)and Mean Absolute Error(MAE)metrics.

关键词

6G/物联网/数据收集/无人机/强化学习

Key words

6G/IoT/data collection/UAV/reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

朱佳琳,张鹏浩,李南希,蒋峥,朱剑驰..基于强化学习的无人机辅助高效能数据收集方法[J].无线电通信技术,2025,51(5):940-950,11.

基金项目

国家重点研发计划(2024YFE0200102)National Key R&D Program of China(2024YFE0200102) (2024YFE0200102)

无线电通信技术

OA北大核心

1003-3114

访问量2
|
下载量0
段落导航相关论文