| 注册
首页|期刊导航|西北师范大学学报(自然科学版)|基于STIRPAT模型的甘肃省碳排放预测与影响因素研究

基于STIRPAT模型的甘肃省碳排放预测与影响因素研究

周玉兰 陈明阳 谭婷婷

西北师范大学学报(自然科学版)2025,Vol.61Issue(5):89-99,11.
西北师范大学学报(自然科学版)2025,Vol.61Issue(5):89-99,11.DOI:10.16783/j.cnki.nwnuz.2025.05.010

基于STIRPAT模型的甘肃省碳排放预测与影响因素研究

Research on carbon emission prediction and influencing factors in Gansu Province based on the STIRPAT model

周玉兰 1陈明阳 1谭婷婷1

作者信息

  • 1. 西北师范大学数学与统计学院,甘肃兰州 730070
  • 折叠

摘要

Abstract

Based on the IPCC emission factor method,this study calculates the carbon emissions in Gansu Province from 1990 to 2021.It employs the LMDI decomposition method and the STIRPAT model to analyze the driving factors of carbon emissions,and uses a random forest algorithm to identify the key influencing factors.The PSO-BP neural network model is then applied to predict future trends under baseline,high-carbon,and low-carbon scenarios.The research findings indicate that energy utilization and the primary and secondary industries within the industrial structure have a restraining effect on carbon emissions.In contrast,factors such as the proportion of urban population,regional GDP,and energy consumption intensity significantly contribute to increased carbon emissions,with natural gas consumption being the largest contributor to carbon emission growth.Random forest analysis confirms that regional GDP,energy consumption intensity,urbanization level,industrial structure,and energy structure are the primary influencing factors.The introduction of the particle swarm optimization(PSO)algorithm effectively enhances the prediction accuracy of the BP neural network.The results show that under the baseline,high-carbon,and low-carbon scenarios,Gansu Province is expected to reach its carbon peak in 2025(250.4439 million tons),2030(260.9157 million tons),and 2035(320.5994 million tons),respectively.

关键词

STIRPAT模型/碳排放/岭回归/随机森林/PSO-BP神经网络

Key words

STIRPAT model/carbon emission/ridge regression/random forest/PSO-BP neural network

分类

资源环境

引用本文复制引用

周玉兰,陈明阳,谭婷婷..基于STIRPAT模型的甘肃省碳排放预测与影响因素研究[J].西北师范大学学报(自然科学版),2025,61(5):89-99,11.

基金项目

国家自然科学基金资助项目(12261080) (12261080)

西北师范大学学报(自然科学版)

1001-988X

访问量0
|
下载量0
段落导航相关论文