| 注册
首页|期刊导航|现代电子技术|基于遮挡感知的安全帽细粒度穿戴检测算法

基于遮挡感知的安全帽细粒度穿戴检测算法

杨学周 张军 陈习文 金淼 刘莉 余锋 姜明华

现代电子技术2025,Vol.48Issue(18):177-186,10.
现代电子技术2025,Vol.48Issue(18):177-186,10.DOI:10.16652/j.issn.1004-373x.2025.18.027

基于遮挡感知的安全帽细粒度穿戴检测算法

Safety helmet fine-grained wearing detection algorithm based on occlusion perception

杨学周 1张军 2陈习文 2金淼 2刘莉 1余锋 3姜明华4

作者信息

  • 1. 武汉纺织大学 计算机与人工智能学院,湖北 武汉 430200
  • 2. 中国电力科学研究院,湖北 武汉 430074
  • 3. 武汉纺织大学 计算机与人工智能学院,湖北 武汉 430200||南洋理工大学 电气与电子工程学院,新加坡 639798||湖北省服装信息化工程技术研究中心,湖北 武汉 430200
  • 4. 武汉纺织大学 计算机与人工智能学院,湖北 武汉 430200||湖北省服装信息化工程技术研究中心,湖北 武汉 430200
  • 折叠

摘要

Abstract

In order to cope with the diversity and complexity of power operation scenarios and solve the difficult problem of safety helmet supervision,an safety helmet fine-grained detection algorithm based on occlusion perception(EHD-Net)is proposed.In allusion to the problem of insufficient multi-scale feature extraction capability in occlusion scenarios,a large separable kernel convolution module(EDKA)based on occlusion perception is proposed,solving the issue of inaccurate detection caused by the occlusion of safety helmet.In allusion to the problems of the insufficient feature extraction and fusion capability of the model,a separation and enhancement attention module(DAAM)is proposed,and a new feature amplification detection head(FA-Head)is constructed,resolving the problem of poor small-object detection performance caused by the limited model receptive fields.To address the model's insufficient convergence capability,a loss function based on distance and scale factors(DLS-IoU)is proposed,solving the problem of slow convergence speed during training.In allusion to the insufficient generalization capability,a scheme of fine-grained dataset partitioning is proposed,which can divide the dataset into five different categories based on the norms of safety helmet wearing and the status of the safety helmet chinstrap,thereby enhancing the practical application ability of the model.The experimental results show that,in comparison with the baseline model(YOLOv8n),the average accuracy of the proposed algorithm can reach 94.5%,an improvement of 6.3%.

关键词

细粒度/遮挡感知/安全帽佩戴检测/目标遮挡检测/小目标检测/卷积神经网络

Key words

fine granularity/occlusion perception/safety helmet wearing perception/object occlusion detection/small object detection/convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

杨学周,张军,陈习文,金淼,刘莉,余锋,姜明华..基于遮挡感知的安全帽细粒度穿戴检测算法[J].现代电子技术,2025,48(18):177-186,10.

基金项目

国家自然科学基金项目(62202346) (62202346)

国家留学基金资助项目(202208420109) (202208420109)

武汉市应用基础前沿研究项目(2022013988065212) (2022013988065212)

湖北省安全生产专项资金科技项目(SJZX20220908) (SJZX20220908)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文