| 注册
首页|期刊导航|通信学报|基于深度强化学习的分离式数据中心存储资源调度优化方法

基于深度强化学习的分离式数据中心存储资源调度优化方法

袁政利 郭少勇 胡鑫 仝杰 郝佳恺 Michel Kadoch 喻鹏

通信学报2025,Vol.46Issue(8):1-15,15.
通信学报2025,Vol.46Issue(8):1-15,15.DOI:10.11959/j.issn.1000-436x.2025135

基于深度强化学习的分离式数据中心存储资源调度优化方法

Storage resource scheduling optimization method for separated data center based on deep reinforcement learning

袁政利 1郭少勇 1胡鑫 1仝杰 2郝佳恺 3Michel Kadoch 4喻鹏1

作者信息

  • 1. 北京邮电大学网络与交换技术全国重点实验室,北京 100876
  • 2. 中国电力科学研究院有限公司,北京 100192
  • 3. 国网北京市电力公司,北京 100031
  • 4. 魁北克大学高等技术学院,蒙特利尔 QC G1K 9H7
  • 折叠

摘要

Abstract

To address the high overhead of scheduling,deployment,and algorithm execution in disaggregated data center storage systems,a deployment solution was proposed that embeded the storage scheduling mechanism into white-box switches.By enabling the interaction between the switches and data processing unit(DPU),the system achieved auto-mated data migration,thereby freeing up I/O resources occupied by storage access.Through a Bayesian-based data tem-perature sensitivity optimization strategy integrating access volume and access interval,it fed the heat information to a deep reinforcement learning(DRL)scheduler that minimized access latency.Simulations show that,against rule-based LRU and FIFO,latency drops from 38.4%to 67.2%.Against DQN,PPO and DDPG,latency drops from 12.8%to 43.2%.

关键词

分离式数据中心/多层级存储/数据迁移/深度强化学习/资源调度

Key words

disaggregated data center/multilevel storage/data migration/deep reinforcement learning/resource scheduling

分类

信息技术与安全科学

引用本文复制引用

袁政利,郭少勇,胡鑫,仝杰,郝佳恺,Michel Kadoch,喻鹏..基于深度强化学习的分离式数据中心存储资源调度优化方法[J].通信学报,2025,46(8):1-15,15.

基金项目

国家自然科学基金资助项目(No.62322103) (No.62322103)

中央高校基本科研业务费专项资金资助项目(No.2023ZCTH11) (No.2023ZCTH11)

北京市自然科学基金资助项目(No.4232009)The National Natural Science Foundation of China(No.62322103),The Fundamental Research Funds for Cen-tral Universities(No.2023ZCTH11),The Natural Science Foundation of Beijing(No.4232009) (No.4232009)

通信学报

OA北大核心

1000-436X

访问量0
|
下载量0
段落导航相关论文