| 注册
首页|期刊导航|通信学报|面向指纹室内定位的高鲁棒性集成对抗训练方法

面向指纹室内定位的高鲁棒性集成对抗训练方法

张学军 李梅 陈惠 王国华

通信学报2025,Vol.46Issue(8):105-118,14.
通信学报2025,Vol.46Issue(8):105-118,14.DOI:10.11959/j.issn.1000-436x.2025138

面向指纹室内定位的高鲁棒性集成对抗训练方法

High-robustness integrated adversarial training method for fingerprint-based indoor localization systems

张学军 1李梅 2陈惠 1王国华1

作者信息

  • 1. 兰州交通大学电子与信息工程学院,甘肃 兰州 730070
  • 2. 兰州交通大学电子与信息工程学院,甘肃 兰州 730070||兰州信息科技学院计算机与人工智能学院,甘肃 兰州 730300
  • 折叠

摘要

Abstract

In response to the vulnerability of fingerprint-based indoor positioning models to adversarial sample attacks,as well as the high resource overhead and limited generalization ability of traditional adversarial training,an ensemble adversarial defense method based on data augmentation and distillation,named EDEAD,was proposed.In EDEAD,the data distillation technique was employed to improve the quality of the augmented data and the early stopping algorithm was used to save training costs.Additionally,a coherence gradient alignment loss term was introduced to enhance adver-sarial response consistency among sub-models while maintaining inter-model diversity.This effectively reduced the transferability of adversarial samples among different positioning models and enhanced the robustness and generalization of the entire indoor positioning system.Experimental results show that under strong black-box attacks,comparing to the traditional high-robustness ensemble strategies GAL and DVERGE,EDEAD reduces the time overhead by 30.6%and 26.1%,respectively,while improving positioning accuracy by 70.6%and 28.3%.These findings verify that EDEAD opti-mizes computational efficiency while maintaining high robustness.

关键词

室内定位/集成对抗训练/黑盒攻击/鲁棒性

Key words

indoor localization/ensemble adversarial training/black-box attack/robustness

分类

信息技术与安全科学

引用本文复制引用

张学军,李梅,陈惠,王国华..面向指纹室内定位的高鲁棒性集成对抗训练方法[J].通信学报,2025,46(8):105-118,14.

基金项目

国家自然科学基金资助项目(No.61762058) (No.61762058)

甘肃省重点研发计划基金资助项目(No.25YFFA089) (No.25YFFA089)

甘肃省教育厅产业支撑基金资助项目(No.2022CYZC-38) (No.2022CYZC-38)

甘肃省自然科学基金资助项目(No.25JRRA190)The National Natural Science Foundation of China(No.61762058),The Key Research and Development Project of Gansu Province(No.25YFFA089),Industrial Support Project of the Education Department of Gansu Provincial(No.2022CYZC-38),The Natural Science Foundation of Gansu Province(No.25JRRA190) (No.25JRRA190)

通信学报

OA北大核心

1000-436X

访问量0
|
下载量0
段落导航相关论文