| 注册
首页|期刊导航|测控技术|多传感器融合的智能室内安全监控系统设计实现

多传感器融合的智能室内安全监控系统设计实现

潘家亮 李博 阮斌

测控技术2025,Vol.44Issue(9):52-60,9.
测控技术2025,Vol.44Issue(9):52-60,9.DOI:10.19708/j.ckjs.2025.05.234

多传感器融合的智能室内安全监控系统设计实现

Design and Implementation of Multi-Sensor Fusion-Based Intelligent Indoor Safety Monitoring System

潘家亮 1李博 2阮斌3

作者信息

  • 1. 浙江工业大学物理学院,浙江 杭州 310023||浙江宇视科技有限公司,浙江 杭州 310051
  • 2. 浙江工业大学物理学院,浙江 杭州 310023
  • 3. 浙江宇视科技有限公司,浙江 杭州 310051
  • 折叠

摘要

Abstract

To address the issues of occlusion sensitivity and insufficient multi-object detection accuracy in intel-ligent monitoring systems for complex scenarios,an embedded monitoring system based on multi-sensor fusion is presented.At the hardware level,an embedded architecture based on system-on-chip is constructed.At the algorithm level,an enhanced YOLOv8n model is proposed,an efficient local attention mixed-scale feature pyra-mid module is introduced to optimize multi-scale feature fusion,and a focused intersection-over-union loss function is applied to improve bounding box regression accuracy.The improved model reduces parameters,com-putational load,and model size by 15.2%,while increasing the mean average precision(mAP)by 3%.Experi-mental results show that the system completes object detection within 0.17 s,achieves fall recognition and ob-ject classification accuracy exceeding 95%,and effectively detects occluded targets within a 70 cm range.The proposed system outperforms traditional solutions in computational efficiency,detection accuracy,and anti-oc-clusion performance,providing a reliable real-time safety monitoring solution for complex indoor environments.

关键词

网络摄像机/嵌入式系统/YOLO/目标识别/遮挡检测

Key words

network camera/embedded system/YOLO/object recognition/occlusion detection

分类

信息技术与安全科学

引用本文复制引用

潘家亮,李博,阮斌..多传感器融合的智能室内安全监控系统设计实现[J].测控技术,2025,44(9):52-60,9.

基金项目

浙江工业大学产学研项目(KYY-HX-20220057) (KYY-HX-20220057)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文