| 注册
首页|期刊导航|电力系统及其自动化学报|改进贝叶斯优化与集成学习短期负荷预测模型

改进贝叶斯优化与集成学习短期负荷预测模型

顼佳宇 王晓冰 李冰 王媛 雍明月 邵晨

电力系统及其自动化学报2025,Vol.37Issue(9):34-44,11.
电力系统及其自动化学报2025,Vol.37Issue(9):34-44,11.DOI:10.19635/j.cnki.csu-epsa.001604

改进贝叶斯优化与集成学习短期负荷预测模型

Short-term Load Forecasting Model Based on Improved Bayesian Optimization and Ensemble Learning

顼佳宇 1王晓冰 1李冰 2王媛 3雍明月 1邵晨4

作者信息

  • 1. 国网北京市电力公司,北京 100031
  • 2. 中国国际工程咨询有限公司,北京 100048
  • 3. 国网四川省电力公司成都供电公司,成都 610000
  • 4. 河北省分布式储能与微网重点实验室(华北电力大学),保定 071003
  • 折叠

摘要

Abstract

A forecasting model based on improved Bayesian optimization and ensemble learning is proposed for short-term load forecasting in power systems.First,the ridge regression,least absolute shrinkage and selection operator(LASSO)regression,random forest(RF)and Huber regression are used as base learners to independently predict the target load value,with the load data in previous periods as independent variables.Second,an extreme gradient boosting(XGBoost)-based meta learner is constructed,and the predictions from base learners are used as independent variables to further improve the prediction accuracy of the target load value.Third,a Hyperband-based improved Bayesian optimi-zation algorithm and 5-fold cross-validation are employed for parameter optimization.Finally,shapley additive explana-tions(SHAP)values are used to analyze the importance of each base learner to the meta learner,as well as the impor-tance of each input feature to the ensemble learning model.Simulation results and a case study demonstrate that the pro-posed method outperforms single models in terms of prediction accuracy and stability.Compared with neural networks,it improves the prediction interpretability without sacrificing the prediction accuracy.

关键词

电力系统/短期负荷预测/贝叶斯优化/集成学习/极致梯度提升/沙普利加和解释值

Key words

power system/short-term load forecasting/Bayesian optimization/ensemble learning/extreme gradient boosting(XGBoost)/shapley additive explanations(SHAP)value

分类

信息技术与安全科学

引用本文复制引用

顼佳宇,王晓冰,李冰,王媛,雍明月,邵晨..改进贝叶斯优化与集成学习短期负荷预测模型[J].电力系统及其自动化学报,2025,37(9):34-44,11.

基金项目

国网北京市电力公司科技项目(520234240002). (520234240002)

电力系统及其自动化学报

OA北大核心

1003-8930

访问量0
|
下载量0
段落导航相关论文