| 注册
首页|期刊导航|国防科技大学学报|黑箱模型约束动态松弛的近似优化方法

黑箱模型约束动态松弛的近似优化方法

马帅超 武泽平 杨家伟 高经纬

国防科技大学学报2025,Vol.47Issue(5):125-133,9.
国防科技大学学报2025,Vol.47Issue(5):125-133,9.DOI:10.11887/j.issn.1001-2486.23020012

黑箱模型约束动态松弛的近似优化方法

Approximate optimization method for constraints dynamic relaxation of black box model

马帅超 1武泽平 1杨家伟 1高经纬1

作者信息

  • 1. 国防科技大学 空天科学学院,湖南 长沙 410073
  • 折叠

摘要

Abstract

The surrogate model-based optimization method provides an effective technical approach for the application of high-precision simulation models in optimal design due to its efficient search capability.To address the problem of time-consuming black-box constraint processing for optimization problems,a multi-constraint adaptive sampling method based on improved feasible rules was proposed,an elite archive-driven inexact search method and an ε-constraint-preserving pseudo-feasible domain construction method were established,and the algorithm's ability to explore the boundaries of the feasible domain was enhanced by dynamically scaling the feasible domain to accept high-quality nonfeasible samples during the iterative process,which improved the surrogate model-based optimization search ability.Simulation results of the Congress on Evolutionary Computation constraint optimization standard function indicate that the ε-constraint maintenance optimization method is effective in solving the multi-constraint surrogate model optimization problem compared with the existing methods.The results for the solid rocket motor rear wing pillar charge design show that the algorithm has the potential to be applied to complex engineering problems.

关键词

代理模型/约束处理/自适应采样/ε-约束保持

Key words

surrogate model/constraint processing/adaptive sampling/ε-constraint holding

分类

航空航天

引用本文复制引用

马帅超,武泽平,杨家伟,高经纬..黑箱模型约束动态松弛的近似优化方法[J].国防科技大学学报,2025,47(5):125-133,9.

基金项目

国家自然科学基金资助项目(52005502) (52005502)

国防科技大学学报

OA北大核心

1001-2486

访问量1
|
下载量0
段落导航相关论文