| 注册
首页|期刊导航|光学精密工程|高频信息物体多层多元特征权重自适应融合三维重建网络

高频信息物体多层多元特征权重自适应融合三维重建网络

王标 李影 融百川 刘璟 张进 王永红

光学精密工程2025,Vol.33Issue(15):2424-2440,17.
光学精密工程2025,Vol.33Issue(15):2424-2440,17.DOI:10.37188/OPE.20253315.2424

高频信息物体多层多元特征权重自适应融合三维重建网络

Multi-layer multi-feature adaptive weight fusion network for 3D reconstruction of objects with high-frequency information

王标 1李影 1融百川 1刘璟 1张进 1王永红1

作者信息

  • 1. 合肥工业大学 仪器科学与光电工程学院,安徽 合肥 230000
  • 折叠

摘要

Abstract

To mitigate the loss of high-frequency surface texture information and the resulting reduction in reconstruction accuracy in deep learning-based photometric stereo,a multi-layer multi-element feature weight adaptive fusion 3D reconstruction network(MMF-Net)is proposed.The network architecture builds on PS-FCN and incorporates a symmetric encoder-decoder to enhance feature learning,representa-tion capacity,and multi-level feature integration.A novel multi-element convolution layer with indepen-dent inter-layer adaptive weights is introduced;by incorporating additional trainable weights,both shape and texture cues are jointly leveraged to better capture fine surface texture variations,thereby improving stability and accuracy in scenes containing dense high-frequency information.An auxiliary skip-connection mechanism is also employed to propagate intermediate-layer features to later stages,preserving high-fre-quency details while reinforcing low-frequency structure,and enabling effective fusion of multi-band(high-and low-frequency)surface information.The method was evaluated on the DiLiGenT benchmark.MMF-Net attains an average mean angular error(MAE)of 6.94°,representing a 6%improvement over PS-FCN(Norm)at 7.39°.For objects exhibiting pronounced high-frequency surface detail,the average re-construction error is 11.03°,a 12%improvement relative to FUPS-Net at 12.52°.The results demon-strate that MMF-Net effectively captures both low-and high-frequency surface information in photometric stereo,offering a viable approach for high-precision 3D reconstruction from surface normals.

关键词

深度学习/光度立体视觉/多元卷积/特征融合/自适应权重

Key words

deep learning/photometric stereo vision/multivariate convolution/feature fusion/adaptive weighting

分类

信息技术与安全科学

引用本文复制引用

王标,李影,融百川,刘璟,张进,王永红..高频信息物体多层多元特征权重自适应融合三维重建网络[J].光学精密工程,2025,33(15):2424-2440,17.

基金项目

国家自然科学基金资助项目(No.52375536) (No.52375536)

长三角科技创新共同体联合攻关资助项目(No.2022CS-JGG1300) (No.2022CS-JGG1300)

合肥市关键技术研发揭榜挂帅资助项目(No.2023SGJ020) (No.2023SGJ020)

光学精密工程

OA北大核心

1004-924X

访问量0
|
下载量0
段落导航相关论文