| 注册
首页|期刊导航|河北工业科技|基于改进Deeplabv3+的遥感滑坡分割提取模型

基于改进Deeplabv3+的遥感滑坡分割提取模型

王建霞 郭玉凤 杨春金 张晓明

河北工业科技2025,Vol.42Issue(5):401-411,11.
河北工业科技2025,Vol.42Issue(5):401-411,11.DOI:10.7535/hbgykj.2025yx05001

基于改进Deeplabv3+的遥感滑坡分割提取模型

Remote sensing landslide segmentation and extraction model based on improved Deeplabv3+

王建霞 1郭玉凤 1杨春金 2张晓明1

作者信息

  • 1. 河北科技大学信息科学与工程学院,河北 石家庄 050018
  • 2. 河北太行机械工业有限公司,河北 石家庄 052160
  • 折叠

摘要

Abstract

In order to address the limitations of traditional high-resolution landslide image segmentation methods in handling details and blurred boundaries,an enhanced Deeplabv3+model(SCPD-Deeplabv3+)was proposed,which integrated Swin Transformer network,convolutional block attention module(CBAM),position attention feature pyramid network(PA-FPN),and multi-layer convolutional decoder.Firstly,the baseline model Deeplabv3+was improved by adopting Swin Transformer as the backbone network,introducing CBAM into the atrous spatial pyramid pooling(ASPP)module of Deeplabv3+,integrating PA-FPN into the decoder,and adding more convolutional layers during the upsampling process.Secondly,the improved Deeplabv3+model was trained.Finally,the high-resolution landslide image test set was fed into the trained SCPD-Deeplabv3+model for ablation experiments to analyze the role of each module,and comparisons with mainstream models such as UNet,proportional-integral-derivative network(PIDNet),and real-time transformer(RTFormer)for semantic segmentation were performed through quantitative evaluation and visualization.The results show that SCPD-Deeplabv3+achieves an average intersection over union of 90.18%,precision of 93.57%,recall of 94.47%,and F1-score of 93.58%,respectively,which are improved by 3.39 percentage points,1.45 percentage points,3.90 percentage points,and 3.51 percentage points compared with the unmodified model.The proposed method effectively enhances the segmentation accuracy and detail restoration capability for landslide areas,providing a reliable technical means for remote sensing landslide monitoring and disaster assessment.

关键词

计算机图像处理/滑坡分割/Deeplabv3+/Swin Transformer

Key words

computer image processing/landslide segmentation/Deeplabv3+/Swin Transformer

分类

信息技术与安全科学

引用本文复制引用

王建霞,郭玉凤,杨春金,张晓明..基于改进Deeplabv3+的遥感滑坡分割提取模型[J].河北工业科技,2025,42(5):401-411,11.

基金项目

河北省自然科学基金(F2022208002) (F2022208002)

河北工业科技

1008-1534

访问量0
|
下载量0
段落导航相关论文