| 注册
首页|期刊导航|华东师范大学学报(自然科学版)|基于多维特征融合的GitHub开发者地理位置预测

基于多维特征融合的GitHub开发者地理位置预测

赵思嘉 韩凡宇 王伟

华东师范大学学报(自然科学版)Issue(5):1-13,13.
华东师范大学学报(自然科学版)Issue(5):1-13,13.DOI:10.3969/j.issn.1000-5641.2025.05.001

基于多维特征融合的GitHub开发者地理位置预测

Research on the GitHub developer geographic location prediction method based on multi-dimensional feature fusion

赵思嘉 1韩凡宇 1王伟1

作者信息

  • 1. 华东师范大学 数据科学与工程学院,上海 200062
  • 折叠

摘要

Abstract

The geographic location information of developers is important for understanding the global distribution of open source activities and formulating regional policies.However,a substantial number of developer accounts on the GitHub platform lack geographic location information,limiting the comprehensive analysis of the geographic distribution of the global open source ecosystem.This study proposed a hierarchical geographic location prediction framework based on multidimensional feature fusion.By integrating three major categories of multidimensional features—temporal behavior,linguistic culture,and network characteristics—the framework established a four-tier progressive prediction mechanism consisting of rule-driven rapid positioning,name cultural inference,time zone cross-validation,and a deep learning ensemble.Experiments conducted on a large-scale dataset built from 50 000 globally active developers demonstrated that this method successfully predicted the geographic locations of 82.52%of the developers.Among these,the name cultural inference layer covered most users with an accuracy of 0.762 9,whereas the deep learning ensemble layer handled the most complex cases with an accuracy of 0.755 7.A comparative analysis with the prediction results from the Moonshot large language model validated the superiority of the proposed method in complex geographic inference tasks.

关键词

GitHub/多维特征/深度学习/地理位置预测

Key words

GitHub/multi-dimensional feature/deep learning/geographic location prediction

分类

信息技术与安全科学

引用本文复制引用

赵思嘉,韩凡宇,王伟..基于多维特征融合的GitHub开发者地理位置预测[J].华东师范大学学报(自然科学版),2025,(5):1-13,13.

基金项目

国家自然科学基金(62137001,62277017,61977026) (62137001,62277017,61977026)

华东师范大学学报(自然科学版)

OA北大核心

1000-5641

访问量0
|
下载量0
段落导航相关论文