| 注册
首页|期刊导航|计算机工程|基于半监督学习的非结构化道路缺陷检测算法

基于半监督学习的非结构化道路缺陷检测算法

朱思远 李佳圣 邹丹平 何迪 郁文贤

计算机工程2025,Vol.51Issue(9):14-24,11.
计算机工程2025,Vol.51Issue(9):14-24,11.DOI:10.19678/j.issn.1000-3428.0069534

基于半监督学习的非结构化道路缺陷检测算法

Unstructured Road Defect Detection Algorithm Based on Semi-Supervised Learning

朱思远 1李佳圣 2邹丹平 1何迪 1郁文贤1

作者信息

  • 1. 上海交通大学电子信息与电气工程学院,上海 200240
  • 2. 上海机电工程研究所,上海 201109
  • 折叠

摘要

Abstract

Detecting defects on unstructured roads is important for road traffic safety;however,annotated datasets required for detection is limited.This study proposes the Multi-Augmentation with Memory(MAM)semi-supervised object detection algorithm to address the lack of annotated datasets for unstructured roads and the inability of existing models to learn from unlabeled data.First,a cache mechanism is introduced to store the positions of the bounding box regression information for unannotated images and images with pseudo annotations,avoiding computational resource wastage caused by subsequent matching.Second,the study proposes a hybrid data augmentation strategy that mixes the cached pseudo-labeled images with unlabeled images inputted into the student model,to enhance the model's generalizability to new data and balance the scale distribution of images.The MAM semi-supervised object detection algorithm is not limited by the object detection model and better maintains the consistency of object bounding boxes,thus avoiding the need to compute consistency loss.Experimental results show that the MAM algorithm is superior to other fully supervised and semi-supervised learning algorithms.On a self-built unstructured road defect dataset,called Defect,the MAM algorithm achieves improvements of 6.8,11.1,and 6.0 percentage points in terms of mean Average Precision(mAP)compared to those of the Soft Teacher algorithm in scenarios with annotation ratios of 10%,20%,and 30%,respectively.On a self-built unstructured road pothole dataset,called Pothole,the MAM algorithm achieves mAP improvements of 5.8 and 4.3 percentage points compared to those of the Soft Teacher algorithm in scenarios with annotation ratios of 15%and 30%,respectively.

关键词

非结构化道路/缺陷目标检测/半监督学习/伪标签/缓存机制/混合数据增强

Key words

unstructured road/defect object detection/semi-supervised learning/pseudo label/cache mechanism/hybrid data augmentation

分类

信息技术与安全科学

引用本文复制引用

朱思远,李佳圣,邹丹平,何迪,郁文贤..基于半监督学习的非结构化道路缺陷检测算法[J].计算机工程,2025,51(9):14-24,11.

基金项目

国家自然科学基金重点项目(62231010) (62231010)

航天科技集团应用创新计划(6230109003). (6230109003)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文