| 注册
首页|期刊导航|计算机工程|基于多时空图融合与动态注意力的交通流预测

基于多时空图融合与动态注意力的交通流预测

翟志鹏 曹阳 沈琴琴 施佺

计算机工程2025,Vol.51Issue(9):139-148,10.
计算机工程2025,Vol.51Issue(9):139-148,10.DOI:10.19678/j.issn.1000-3428.0069439

基于多时空图融合与动态注意力的交通流预测

Traffic Flow Prediction Based on Multiple Spatio-Temporal Graph Fusion and Dynamic Attention

翟志鹏 1曹阳 1沈琴琴 1施佺1

作者信息

  • 1. 南通大学交通与土木工程学院,江苏南通 226019
  • 折叠

摘要

Abstract

Accurate traffic flow prediction is a key prerequisite for realizing intelligent transportation systems,and is of great significance for strengthening system simulation and control and improving the decision-making of managers.To address the problem of most existing Graph Convolutional Network(GCN)models ignoring the dynamic spatial and temporal variations in traffic data and insufficiently employing node information,which leads to insufficient extraction of spatial and temporal correlations,a traffic flow prediction model based on multiple spatio-temporal graph fusion and dynamic attention is proposed.First,the temporal characteristics of traffic flow data in multi-temporal states are extracted by different convolutional cells.The next step involves constructing a multiple spatio-temporal graph to capture the dynamic trend and heterogeneity of nodes in spatial distribution,followed by extracting spatial characteristics through the integration of GCN.Finally,the spatial and temporal characteristics are analyzed and fused using the multi-head self-attention mechanism to output prediction results.Experimental analyses are performed on two public datasets,PeMS04 and PeMS08,and compared with the Attention Based Spatial-Temporal Graph Convolutional Network(ASTGCN),Multiview Spatial-Temporal Transformer Network(MVSTT),Dynamic Spatial-Temporal Aware Graph Neural Network(DSTAGNN)and other benchmark models that utilize spatio-temporal graph convolution.The results show that the Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and Root Mean Square Error(RMSE)of the proposed model are reduced by 7.10%,7.22%,and 6.47%,respectively,demonstrating the proposed model's strong adaptability and robustness.

关键词

智能交通系统/交通流预测/时空特征/图卷积网络/多头自注意力机制

Key words

intelligent transportation system/traffic flow prediction/spatio-temporal characteristics/Graph Convolution Network(GCN)/multi-head self-attention mechanism

分类

信息技术与安全科学

引用本文复制引用

翟志鹏,曹阳,沈琴琴,施佺..基于多时空图融合与动态注意力的交通流预测[J].计算机工程,2025,51(9):139-148,10.

基金项目

国家自然科学基金面上项目(61771265) (61771265)

江苏高校"青蓝工程"项目 ()

南通市科技计划项目(JC2021198). (JC2021198)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文