| 注册
首页|期刊导航|交通信息与安全|基于多模态信息融合的铁路安全知识深度挖掘与生成式推荐方法

基于多模态信息融合的铁路安全知识深度挖掘与生成式推荐方法

高丽 杨诺晗 李晴 王永恒 严晗 赵汝豪 马小平

交通信息与安全2025,Vol.43Issue(3):33-43,11.
交通信息与安全2025,Vol.43Issue(3):33-43,11.DOI:10.3963/j.jssn.1674-4861.2025.03.004

基于多模态信息融合的铁路安全知识深度挖掘与生成式推荐方法

Deep Mining and Association Recommendation Method for Railway Safety Knowledge Based on Multimodal Information Fusion

高丽 1杨诺晗 1李晴 2王永恒 2严晗 2赵汝豪 2马小平2

作者信息

  • 1. 国能包神铁路有限责任公司企业管理部 内蒙古 鄂尔多斯 017099
  • 2. 北京交通大学交通运输学院 北京 100044
  • 折叠

摘要

Abstract

The rapid digital and intelligent transformation of railway information systems has created an urgent de-mand for fine-grained,explainable safety knowledge recommendations.To address the fragmentation of cross-mod-al associations and insufficient alignment with operational rules exhibited by traditional approaches,a framework in-tegrating multimodal feature fusion with generative reasoning is investigated.A hierarchical railway safety knowl-edge graph is constructed,and topological features under business constraints are extracted via the Node2Vec algo-rithm.Simultaneously,a lightweight Transformer encoder(GTE)captured deep semantic embeddings of individual safety clauses.To balance contributions from graph and text features,a tunable weighting strategy is introduced,dy-namically controlling the fusion ratio of text vectors and graph embeddings and applying a dual-constraint mecha-nism based on cosine similarity and predefined rules to generate candidate recommendations.A three-stage progres-sive retrieval architecture is designed to achieve precise multimodal alignment and suppress noise.Finally,the Deep-Seek-R1 large language model served as the reasoning engine,with domain-specific prompting converting retrieved candidates into executable decision plans,thereby enhancing coherence and interpretability.Experiments on 27 safe-ty documents from a railway operator,using a similarity threshold of 0.85 and a maximum of 10 recommendations per query,demonstrated a recommendation accuracy of 95%(an 8-percentage-point improvement over traditional methods)along with significant gains in contextual relevance and explainability.This investigation confirms the syn-ergistic benefits of multimodal retrieval and generative reasoning,providing a robust technical foundation for evolv-ing railway safety knowledge services from precise recommendation to intelligent decision support.

关键词

铁路安全知识推荐框架/多模态特征融合/知识图谱/生成式推理/文本关联分析

Key words

railway safety knowledge recommendation framework/multimodal feature fusion/knowledge graph/generative reasoning/textual association analysis

分类

交通工程

引用本文复制引用

高丽,杨诺晗,李晴,王永恒,严晗,赵汝豪,马小平..基于多模态信息融合的铁路安全知识深度挖掘与生成式推荐方法[J].交通信息与安全,2025,43(3):33-43,11.

基金项目

国家自然科学基金青年项目(61903023)、社会科学横向项目(B24SK00250)资助 (61903023)

交通信息与安全

OA北大核心

1674-4861

访问量0
|
下载量0
段落导航相关论文