| 注册
首页|期刊导航|机电工程技术|基于MediaPipe-Attention-Mesh模型的面部多特征疲劳驾驶检测算法

基于MediaPipe-Attention-Mesh模型的面部多特征疲劳驾驶检测算法

薛珍珠 程豪 王权 王艳

机电工程技术2025,Vol.54Issue(17):41-45,87,6.
机电工程技术2025,Vol.54Issue(17):41-45,87,6.DOI:10.3969/j.issn.1009-9492.2025.00039

基于MediaPipe-Attention-Mesh模型的面部多特征疲劳驾驶检测算法

Facial Multi-feature Fatigue Driving Detection Algorithm Based on MediaPipe-Attention-Mesh Model

薛珍珠 1程豪 1王权 1王艳1

作者信息

  • 1. 郑州科技学院机械工程学院,郑州 450064
  • 折叠

摘要

Abstract

To address the limitations of existing facial feature localization algorithms,such as insufficient accuracy in landmarks detection and oversimplified features for fatigue state discrimination,a multi-feature fatigue driving detection algorithm based on MediaPipe-Attention-Mesh model is proposed.The method constructs a lightweight neural network architecture and introduces a channel-spatial dual-attention mechanism to enhance feature extraction in critical regions(e.g.,eyelids and lips),achieving precise localization of 478 facial landmarks.Temporal features,including blink frequency,sustained eye closure duration,and yawn frequency per unit time,are extracted to establish a fatigue-specific dataset.A random forest classifier is employed to determine fatigue states.Experimental results on the YawDD benchmark dataset demonstrate an accuracy of 95.7%(F1-score=0.952,AUC=0.983).Ablation studies reveal that the multi-feature fusion strategy improves AUC by 3.5%compared to single-feature approaches.This method provides an effective technical solution for real-time fatigue monitoring in complex driving scenarios.

关键词

MediaPipe-Attention-Mesh/关键点检测/多特征融合/随机森林/疲劳判断

Key words

MediaPipe-Attention-Mesh/key point detection/multi-feature fusion/random forest/fatigue assessment

分类

信息技术与安全科学

引用本文复制引用

薛珍珠,程豪,王权,王艳..基于MediaPipe-Attention-Mesh模型的面部多特征疲劳驾驶检测算法[J].机电工程技术,2025,54(17):41-45,87,6.

基金项目

河南省高等学校重点科研项目计划(23B460005) (23B460005)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文