基于径向基神经网络的半导体激光器温度自抗扰控制OA
Temperature Rejection Control of Semiconductor Laser Based on Radial Basis Neural Network
为解决半导体激光器在气体检测过程中易受到工作温度影响,产生波长偏移,进而降低浓度探测精度的问题,提出了一种基于径向基函数神经网络(RBFNN)的激光器温度自抗扰控制(ADRC)方法.设计了一个结合RBF神经网络的自抗扰控制器,采用梯度下降法实时调整扩张状态观测器中的非线性参数,优化温控系统的动态响应和抗扰性能.实验仿真结果表明,所提方法能够显著提高温控精度,稳态误差仅为0.004 ℃,超调量为0.93%,调整时间为13.8 s,较传统PID和ADRC方法具有更优异的控制性能,具有较高的实用价值.
In order to solve the problem that semiconductor lasers are easily affected by the operating temperature during gas detection,resulting in wavelength shift,and then reducing the concentration detec-tion accuracy,an auto disturbance rejection control(ADRC)method based on radial basis function neural network(RBFNN)was proposed.An active disturbance rejection controller combined with RBF neural network was designed,and the gradient descent method was used to adjust the nonlinear parameters in the dilated state observer in real time to optimize the dynamic response and anti-disturbance performance of the temperature control system.The experimental simulation results show that the proposed method can significantly improve the temperature control accuracy,the steady-state error is only 0.004 ℃,the over-shoot is 0.93%,and the adjustment time is 13.8 s,which has better control performance and higher practi-cal value than the traditional PID and ADRC methods.
张会珍;孙琦;王立杰;唐思懿;侯男
东北石油大学,黑龙江 大庆 163318东北石油大学,黑龙江 大庆 163318东北石油大学,黑龙江 大庆 163318东北石油大学,黑龙江 大庆 163318东北石油大学,黑龙江 大庆 163318
信息技术与安全科学
半导体激光器温度控制径向基神经网络自抗扰控制
semiconductor lasertemperature controlRBFNNADRC
《机械与电子》 2025 (9)
40-44,50,6
海南省科技计划三亚崖州湾科技城联合项目资助(2021JJLH0025)
评论