| 注册
首页|期刊导航|空气动力学学报|基于条件扩散的变形结构气动热预测方法

基于条件扩散的变形结构气动热预测方法

何纪云 吕宏强 李旭东 虞建 许冉 张俊龙 刘学军

空气动力学学报2025,Vol.43Issue(8):22-35,14.
空气动力学学报2025,Vol.43Issue(8):22-35,14.DOI:10.7638/kqdlxxb-2024.0176

基于条件扩散的变形结构气动热预测方法

An aeroheating prediction method for deformed structures based on conditional diffusion model

何纪云 1吕宏强 2李旭东 3虞建 1许冉 1张俊龙 1刘学军1

作者信息

  • 1. 南京航空航天大学人工智能学院,脑机智能技术教育部重点实验室,南京 211106
  • 2. 南京航空航天大学航空学院,南京 210016
  • 3. 北京航天长征飞行器研究所,北京 100071
  • 折叠

摘要

Abstract

The shape of aircraft with telescopic deformed structures is complex,and the distribution of aerothermal data varies significantly.Traditional surrogate models to capture the aerothermal heating distribution of telescopic structures,hindering effective prediction struggle on structural surfaces.Based on the conditional diffusion model,the Heating-MLP Diffusion(HMD)method for deformable structures was proposed,comprising two processes:forward diffusion and reverse denoising.In the forward diffusion process,the original aerothermal data is gradually corrupted until it becomes pure Gaussian noise.In the reverse denoising process,using the shape and operating conditions of the deformed structure as conditional inputs,a fully connected neural network predicts the noise added at each diffusion step,thereby learning the implicit distribution characteristics of aerothermal heating data,thus enabling the prediction of aerothermal heating on the surface grid points of aircraft telescopic deformed wings.Numerical simulation data validated the proposed model.Experimental results demonstrate that compared with Gaussian processes,neural processes,and neural networks,the conditional diffusion model-based aerothermal prediction method achieves higher accuracy,with a mean absolute percentage error of~10%.This evidence proves its effectiveness in predicting aerothermal heating on high-speed aircraft wings with telescopic deformed structures providing an accurate prediction model for engineering applications.

关键词

条件扩散/代理模型/高速/气动热/伸缩变形结构/全连接神经网络

Key words

conditional diffusion/surrogate models/high speed/aeroheating/telescopic deformed structure/fully connected neural network

分类

信息技术与安全科学

引用本文复制引用

何纪云,吕宏强,李旭东,虞建,许冉,张俊龙,刘学军..基于条件扩散的变形结构气动热预测方法[J].空气动力学学报,2025,43(8):22-35,14.

基金项目

国家自然科学基金面上项目(12472236) (12472236)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文