| 注册
首页|期刊导航|生态与农村环境学报|人工智能赋能工业固废基吸附剂开发的研究进展与前景展望

人工智能赋能工业固废基吸附剂开发的研究进展与前景展望

杨子溢 卜元卿 张后虎

生态与农村环境学报2025,Vol.41Issue(9):1134-1142,9.
生态与农村环境学报2025,Vol.41Issue(9):1134-1142,9.DOI:10.19741/j.issn.1673-4831.2025.0340

人工智能赋能工业固废基吸附剂开发的研究进展与前景展望

Research Progress and Prospects of AI-enabled Development of Adsorbents Derived from Industrial Solid Waste

杨子溢 1卜元卿 2张后虎1

作者信息

  • 1. 生态环境部南京环境科学研究所,江苏南京 210042
  • 2. 生态环境部南京环境科学研究所,江苏南京 210042||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044
  • 折叠

摘要

Abstract

Artificial intelligence(AI)technologies are becoming vital tools in promoting the resource utilization of indus-trial solid waste(ISW)and the intelligent development of waste-derived adsorbents.As the preparation of ISW-based ad-sorbents is increasingly regarded as a promising utilization pathway,it still faces major obstacles such as the complexity and variability of raw materials,the lack of rule-based guidance in process design,and a heavy reliance on trial-and-error parameter optimization.In this context,AI demonstrates significant potential in key stages of adsorbent development,in-cluding experimental data extraction and structuring,synthesis pathway design using algorithmic optimization,property-performance relationship modeling through machine learning,and high-throughput virtual screening enabled by intelligent surrogate models.This review summarizes the progress of AI applications in representative porous materials such as metal-organic frameworks,zeolites and biochar,with emphasis on how different AI models,such as artificial neural networks,decision trees and support vector machines,have been employed to guide synthesis conditions,predict adsorption capacity and identify key descriptors.In addition,practical explorations of AI-enabled ISW-derived adsorbent development are re-viewed.Finally,key challenges such as fragmented data,limited model interpretability and complex pollutant-material in-teractions,are discussed.Future research is suggested to focus on building standardized and shareable data infrastruc-tures,incorporating multiscale simulations that couple quantum-level and process-level insights,enhancing model inter-pretability via explainable AI techniques and fostering interdisciplinary collaboration to advance the intelligent development of ISW-based adsorbents.

关键词

人工智能/工业固体废物/吸附剂/机器学习/资源化利用

Key words

artificial intelligence/industrial solid waste/adsorbents/machine learning/resource utilization

分类

资源环境

引用本文复制引用

杨子溢,卜元卿,张后虎..人工智能赋能工业固废基吸附剂开发的研究进展与前景展望[J].生态与农村环境学报,2025,41(9):1134-1142,9.

基金项目

国家重点研发计划(2023YFC3706603) (2023YFC3706603)

生态环境部预算项目 ()

国家重点研发计划(2022YFC2105405) (2022YFC2105405)

生态与农村环境学报

OA北大核心

1673-4831

访问量0
|
下载量0
段落导航相关论文