| 注册
首页|期刊导航|生态与农村环境学报|人工智能关键技术在化学物质毒性预测中的应用研究进展

人工智能关键技术在化学物质毒性预测中的应用研究进展

李思敏 张后虎 张佩雯 卜元卿

生态与农村环境学报2025,Vol.41Issue(9):1158-1169,12.
生态与农村环境学报2025,Vol.41Issue(9):1158-1169,12.DOI:10.19741/j.issn.1673-4831.2025.0337

人工智能关键技术在化学物质毒性预测中的应用研究进展

Research Progress on the Application of Key Artificial Intelligence Technologies in Chemical Toxicity Prediction

李思敏 1张后虎 1张佩雯 1卜元卿2

作者信息

  • 1. 生态环境部南京环境科学研究所,江苏南京 210033
  • 2. 生态环境部南京环境科学研究所,江苏南京 210033||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044
  • 折叠

摘要

Abstract

With the continuous growth of the number and types of chemical substances and the aggravation of potential en-vironmental risks of chemical substances,traditional toxicity testing methods are inadequate to meet the requirements of high-throughput screening and systematic risk assessment.Artificial intelligence(AI)technologies,particularly big data and machine learning technologies have shown great promise in chemical substance toxicity prediction.In this paper,we conduct a systematical review of the advancements of the application of key AI technologies in the construction of chemical toxicity prediction models,covering the core aspects of data collection,cleaning and preprocessing,molecular descriptor computation,feature extraction and selection,model training and validation,as well as the definition of model applicabili-ty domain and interpretability analysis.Moreover,by integrating the major domestic research findings in the field of AI-as-sisted toxicity prediction with our team's research practices,the key achievements of our team in data standardization,mo-lecular feature engineering,model development,applicable domains,and model interpretability are presented.Finally,the future development direction is proposed to address the challenges of current toxicity prediction models in terms of data heterogeneity,multimodal data fusion,complex toxicity endpoint prediction and interpretation of predicted results.The aim of this paper is to promote the in-depth application of AI technology in the toxicity prediction of chemical substances,and to provide theoretical foundation and technical support for the efficient and reliable risk assessment of environmental pollutants.

关键词

人工智能/大数据技术/机器学习/化学物质/毒性预测

Key words

artificial intelligence/big data technology/machine learning/chemicals/toxicity prediction

分类

资源环境

引用本文复制引用

李思敏,张后虎,张佩雯,卜元卿..人工智能关键技术在化学物质毒性预测中的应用研究进展[J].生态与农村环境学报,2025,41(9):1158-1169,12.

基金项目

国家重点研发计划(2023YFC3706603) (2023YFC3706603)

国家自然科学基金长江水科学研究联合基金项目(U2340202) (U2340202)

生态环境部预算项目(化学品与重金属污染防治监督管理、农村和农业环境保护管理) (化学品与重金属污染防治监督管理、农村和农业环境保护管理)

生态与农村环境学报

OA北大核心

1673-4831

访问量0
|
下载量0
段落导航相关论文