| 注册
首页|期刊导航|农业工程|基于SS-FusionNet的苍术与关苍术分类方法

基于SS-FusionNet的苍术与关苍术分类方法

郭鹏飞 王飞云 陈月锋 韩亚芬 赵明杰 吕程序 赵博 姜含露

农业工程2025,Vol.15Issue(9):27-35,9.
农业工程2025,Vol.15Issue(9):27-35,9.DOI:10.19998/j.cnki.2095-1795.202509305

基于SS-FusionNet的苍术与关苍术分类方法

Classification method for Atractylodes lancea(Thunb.)DC.and Atractylodes japonica Koidz.Ex Kitam.based on SS-FusionNet

郭鹏飞 1王飞云 1陈月锋 2韩亚芬 1赵明杰 2吕程序 1赵博 1姜含露1

作者信息

  • 1. 中国农业机械化科学研究院集团有限公司,农业装备技术国家重点实验室,北京 100083
  • 2. 中国农业机械化科学研究院集团有限公司浙江分公司,浙江 绍兴 312039
  • 折叠

摘要

Abstract

Atractylodes lancea(Thunb.)DC.and Atractylodes japonica Koidz.Ex Kitam.are highly similar in appearance,composi-tion,and other aspects.Traditional identification methods based on morphological or chemical indicators have low classification accur-acy under conditions of small sample sizes or non-destructive testing.A deep learning classification network called SS-FusionNet was proposed,which integrated spectral and image information for high-precision classification of Atractylodes lancea(Thunb.)DC.and Atractylodes japonica Koidz.Ex Kitam.slices under hyperspectral image and small sample conditions.Atractylodes lancea(Thunb.)DC.and Atractylodes japonica Koidz.Ex Kitam.slices sample data were collected by hyperspectral imaging system.An autoencoder net-work was pre-trained using unlabeled hyperspectral data to enable encoder module to extract image features from spectral data.Spectral features were deeply fused with image features,and classification was performed by combining upsampling convolution module.Exper-imental results showed that under small sample conditions,SS-FusionNet achieved a classification accuracy of 92.7%,which was 7.5 percentage points higher than 85.2%classification accuracy of support vector machines and 6.1 percentage points higher than 86.6%accur-acy of convolutional neural networks.A new ideas and methods was procided for in-depth identification research on traditional Chinese medicine species.

关键词

高光谱图像/苍术/关苍术/图谱融合/自编码器/小样本分类/分类网络

Key words

hyperspectral image/Atractylodes lancea(Thunb.)DC./Atractylodes japonica Koidz.Ex Kitam./spectral image fusion/autoencoder/small sample classification/classification network

分类

农业科技

引用本文复制引用

郭鹏飞,王飞云,陈月锋,韩亚芬,赵明杰,吕程序,赵博,姜含露..基于SS-FusionNet的苍术与关苍术分类方法[J].农业工程,2025,15(9):27-35,9.

基金项目

中国机械工业集团有限公司科研项目(ZDZX2022-2) (ZDZX2022-2)

农业工程

2095-1795

访问量0
|
下载量0
段落导航相关论文